

Gamma Factory for CERN

Concept and progress report

kevin Cassou, on behalf of the GammaFactory collaboration

Introduction

GammaFactory challenges

A GammaFactory Proof of Principle experiment

Conclusion

GammaFactory collaboration today's

A. Abramov¹, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴, H. Bartosik², E.G. Bessonov⁵, N. Biancacci², J. Bieron⁶, A. Bogacz⁷, A. Bosco¹, R. Bruce², D. Budker^{8,9,10}, K. Cassou¹1, F. Castelli¹2, I. Chaikovska², <u>C. Curatolo¹3</u>, P. Czodrowski², A. Derevianko¹4, K. Dupraz¹1, Y. Dutheil², K. Dzierzega⁶, V. Fedosseev², N. Fuster Martinez², S.M. Gibson¹, B. Goddard², A. Gorzawski^{15,2}, S. Hirlander², J.M. Jowett², R. Kersevan², M. Kowalska², M.W. Krasny^{2,16}, F. Kroeger¹7, D. Kuchler², M. Lamont², T. Lefevre², D. Manglunki², B. Marsh², A. Martens¹1, J. Molson², D. Nutarelli¹1, L.J. Nevay¹, A. Petrenko⁵, V. Petrillo¹2, W. Płaczek⁶, S. Redaelli², S. Pustelny^{6,5}, S. Rocheste⁺⁸, M. Sapinski¹⁹, M. Schaumann², M. Scrivens², L. Serafini¹2, V.P. Shevelko⁵, T. Stoehlker¹7, A. Surzhykov²0, I. Tolstikhina⁵, F. Velotti², G. Weber¹7, Y.K. Wu²1, C. Yin-Vallgren², M. Zanetti^{13,2,2}, F. Zimmermann², M.S. Zolotorev²3 and F. Zomer¹1

1, Royal Holloway University of London Egham, Surrey, TW20 0EX, United Kingdom; 2,CERN, Geneva, Switzerland; 3 Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, Russia; 4 A.I. Alikhanyan National Science Laboratory, Yerevan, Armenia; 5 P.N. Lebedev Physical Institute, Russia Academy of Sciences, Leinnskii prospect 53, 119991-Moscow, Russia; 6 Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland; 7 Center for Advanced Studies of Accelerators, Jefferson Lab, USA; 8 Helmholtz Institute, Johannes Gutenberg University, Mainz, Germany; 9 Department of Physics, University of California, Berkeley, USA; 10, Nuclear Science Division, E.O. Lawrence National Laboratory, Berkeley, USA; 10, Nuclear Science Division, E.O. Lawrence, National Laboratory, Berkeley, USA; 11 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France; 12 Department of Physics, INFN Milan and University of Milan, Milan, Italy; 13 INF-Padua, Padua, Italy; 14 University of Nevada, Reno, Nevada 89557, USA; 15University of Malta, Malta; 16 LPNHE, University Paris Sorbonne, CNRS-IN2P3, Paris, France; 17HI Jena, IOQ FSU Jena and GSI Darmstadt, Germany; 18 Rochester Scientific, LLC, El Cerrito, CA 94530, USA;19 GSI, Helmholtzzentrum fur Schwerionenforschung, 64291 Darmstadt, Germany; 20 Braunschweig University of Technology and Physikalisch-Technische Bundesanstalt, Germany; 11 FEL Laboratory, Duke University, Durham, USA; 22 University of Padua, Padua, Italy; 23 Center for Beam Physics, LBNL, Berkeley, USA

special thanks based on Y. Dutheil, C. Curatolo, W. Krasny and M. Lamont materials

$\gamma-{\rm ray}$ sources around the world

Doppler upshifting of intense laser sources; "monochromatic" source; intense electron beam needed.

Project name	LADON ^a	LEGS	ROKK-1M ^b	GRAAL	LEPS	HIγS ^c
Location	Frascati	Brookhaven	Novosibirsk	Grenoble	Harima	Durham
	Italy	US	Russia	France	Japan	US
Storage ring	Adone	NSLS	VEPP-4M	ESRF	SPring-8	Duke-SR
Electron energy (GeV)	1.5	2.5-2.8	1.4-6.0	6	8	0.24-1.2
Laser energy (eV)	2.45	2.41-4.68	1.17-4.68	2.41-3.53	2.41-4.68	1.17-6.53
y-beam energy (MeV)	5-80	110-450	100-1600	550-1500	1500-2400	1-100 (158) ^d
Energy selection	Internal	External	(Int or Ext?)	Internal	Internal	Collimation
	tagging	tagging	tagging	tagging	tagging	
γ-energy resolution (FWHM)						
ΔE (MeV)	2-4	5	10-20	16	30	0.008-8.5
$\frac{\Delta E}{E}$ (%)	5	1.1	1-3	1.1	1.25	0.8-10
E-beam current (A)	0.1	0.2	0.1	0.2	0.1-0.2	0.01-0.1
Max on-target flux (γ/s)	5×10^{5}	5×10^{6}	10 ⁶	3×10^{6}	5×10^{6}	$10^{4}-5 \times 10^{8}$
Max total flux (γ/s)						10^{6} -3 × 10^{9}
Years of operation	1978-1993	1987-2006	1993-	1995-	1998-	1996-

The Gamma Factory Goal: get XFEL flux in the MeV range ! (DESY XFEL : $10^{11} - 10^{13} \text{ ph/pulse}, 10 - 5000 \text{ pulses/s} \rightarrow 10^{12} - 10^{17} \text{ ph/s}$

... An intensity jump of 3 - 8 orders of magnitude is required !!!

courtesy of W. Krasny

Principle

the basic idea... in the LHC context

 Replace an electron beam by a beam of highly ionised atoms (Partially Stripped lons - PSI)

PSI means here H-like, He-like or Li-Like ions.

PSI as a frequency converter

$$\omega^{\max} = (\mathbf{4}\gamma_{\mathsf{L}}^{\mathbf{2}})\omega_{\mathsf{i}}$$

where γ_L is the Lorentz factor and ω_i is the angular frequency of the transition. Tuning :

- ion type, ion charge
- atomic excitation level (transition energy and lifetime)
- beam energy
- laser source
- ➡ At CERN, in the energy domain of 30 keV 400 MeV.

Example (maximal energy case) LHC, Pb⁸⁰⁺ ion, $\gamma_L = 2887$, $n = 1 \rightarrow 2$, $\lambda_{laser} = 104.4$ nm, $E_{\gamma}^{max} = 396$ MeV

γ -ray source intensity leap

Electrons

Partially Stripped Ions

$$\sigma_e = \frac{8\pi}{3r_e^2}$$

$$\sigma_{res} = \frac{\lambda_{res}^2}{2\pi}$$

 $\lambda_{\it res}$ wavelength in the ion rest frame.

with r_e classical electron radius $\sigma_e = 6.6 \times 10^{-25} \, \mathrm{cm}^2$

 $\sigma_{\rm res} = 5.9 \times 10^{-16} \, {\rm cm}^2$

\sim 9 orders of magnitude difference in the cross section

Numerical example

Scenario 1 : FEL : 104.4nm, Pb^{80+} ion, $\gamma_L = 2887$, $n = 1 \rightarrow 2$, $E_{\gamma}^{max} = 396 \text{ MeV}$, $N_{\gamma}^{max} \sim 6 \times 10^{15} \text{ ph/s...}$ with the current LHC RF system.

Scenario 2 : Erbium doped laser : 1540 nm, Ar¹⁶⁺ ion, $\gamma_L = 2068$, $E_{\gamma}^{max} = 13.8 \text{ MeV}$, $N_{\gamma}^{max} \sim 3 \times 10^{17} \text{ ph/s} !!$ a 7 orders potential jump w.r.t Duke's HiGs

with $N_{\gamma}^{max} = N_{ion/bunch} \times N_{bunches} \times f[1/s] \times RF[MV] \times Z/ < E_{\gamma}[MeV] >$

A leap in the $\gamma\text{-ray}$ source efficiency

Example: Pb, hydrogen-like ions stored in LHC γ_L = 2887.

Partially Stripped Ions

Electrons

 $\textit{E}_{\textit{beam}} = 1.5\,\mathrm{GeV}$

Electron fractional energy loss emission of 150 MeV photon:

$$E_{\gamma}/E_{beam}=0.1$$

➡ electron is lost !!!

 $E_{\textit{beam}} = 574000\,{\rm GeV}$

Electron fractional energy loss emission of 150 MeV photon:

$$\textit{E}_{\gamma} / \textit{E}_{\textit{beam}} = 2.6 \times 10^{-7}$$

 \blacksquare ion undisturbed !!!

- stable ion beams in the regime of multi photon emission per turn
- The source intensity is driven by the power of the storage ring RF cavities!

A cool side effect : beam cooling

As the ion momentum is much larger than the photon's, excitation only induces a very small deviation of the ion trajectory

• Longitudinal cooling: energy loss grows with ion energy

 Transverse cooling: possible with a coupling between transverse and longitudinal component in dispersive sections in ring

Alexei Petrenkohttp://www.inp.nsk.su/~petrenko/misc/ion_cooling/animations/

GammaFactory

Camilla Curatolo W. Placzek et al. - Gamma Factory at CERN – novel research tools made of light,

doi 10.5506/APhysPolB.50.1191

September 17, 2019

Gamma Factory for CERN

GammaFactory beams and collision schemes

Primary beams:

- partially stripped ions : new at highly relativistic energy
- electron beams (LHC)
- gamma rays :10⁴ intensity gain factor w.r.t present sources

Secondary beams:

- polarized e-
- polarized e+ : 10⁴ intensity gain factor w.r.t KEK e+ source
- polarized muons : 10³ intensity gain factor w.r.t PSI muon source
- neutron: 10⁴ gain factor in flux with 1kW driver beam power
- radioactive nuclei: 10⁴ gain in intensity w.r.t ALTO.

collider schemes

 $\gamma - \gamma \text{ collisions,}$ $E_{CM} = 0.1 - 800 \text{ MeV}$ $\gamma - \gamma_L \text{ collisions,}$ $E_{CM} = 1 - 100 \text{ keV}$

W. krasny, 2018 CERN presentation M.W. Krasny, F. Dydak, F. Fayette, W. Placzek, A. Siodmok, Eur.Phys.J. C69 (2010) 379-397.

The Gamma Factory initiative (arXiv:1511.07794 [hep-ex]),2017

Gammafactory research programs

GammaFactory challenges

LHC accelerators complex

September 17, 2019

Gamma Factory for CERN

first PSI in the LHC in summer 2018 !

successful injection in SPS of Pb^{80+} , Pb^{81+} , Pb^{82+} , lifetime 660 \pm 30 s

first PSI in the LHC in summer 2018 !

 ${}^{>\!\!\!>}$ successful injection in SPS of $\mathsf{Pb}^{80+},\,\mathsf{Pb}^{81+},\mathsf{Pb}^{82+},$ lifetime 660 \pm 30 s

 $^{\bullet\bullet}$ Pb^{81}+ to the maximum LHC energy, intensity/bunch 7 \times 10 9 charges 6 bunches circulating, lifetime 54.5 \pm 1.7 h

first PSI in the LHC in summer 2018 !

symmetry topics -

follow +

A joint Fermilab/SLAC publication

LHC accelerates its first "atoms"

07/27/18 | By Sarah Charley

Lead atoms with a single remaining electron circulated in the Large Hadron Collider.

https://home.cem/about/boulates/2016/01/bio-accelerates-its-first-atoms. https://www.scienceatert.com/use-large-hadron-collider-just-successfully-accelerated-its-first-atoms https://www.forbes.com/sites/meriameberboucha/2018/07/31/lhc-at-cem-accelerates-atoms-for-the-first-time/ #36db60ae5cb4 https://www.livescience.com/63211-lhc-atom-with-electrons-laft-speed.html https://www.scienceaters.org/article/physicists-accelerates-its-first-atoms https://www.scienceaters.org/article/physicists-accelerates-atoms-collider-first-time. https://www.scienceaters.org/article/p460.the-laccelerates-its-first-atoms https://www.scienceaters.org/article/9460.the-laccelerates-its-first-atoms https://www.maxiscience.com/forder_arand-collisionneur-dis-faderons-lhc-accemplit-une-grande-premiere_art41268.html https://www.maxiscienceaters.org/article/9460.the-lhc-accelerates-its-first-atoms

Challenges

- laser sources : integration > 200 kW, 40 MHz enhanced cavity seeded by high power laser in SPS/LHC tunnel
- beam dynamics : high level of control of the ion beam is required (relative beam momentum stability required $\sim 10^{-5}$)
- software tool : modeling codes are critical for optimization of beams parameters, 5 independent codes are developed (Russia, Italy, UK,France, Poland)

September 17, 2019

Gamma Factory for CERN

A GammaFactory Proof of Principle experiment

GammaFactory Proof of Principle (GFPOP) in SPS

Main objectives

- production and optimization of PSI beams
- development of embedded high power laser system for accelerator tunnel
- verify our simulation models

Demonstration of excitation

- Achieve PSI beam resonant excitation and maximise photon production
- Maintain the resonance over 100 s in SPS

Demonstration of beam cooling

- Observed longitudinal beam cooling in a few seconds
- Using correlation between position and energy of ion beams in the interaction region measure transverse beam cooling

... Possibly perform accurate measurement of the ion transition with accurate ion beam absolute energy.

GFPOP in SPS : parameters

Generation of X-ray on SPS straight section with beam cooling of the PSI beam. Two possibilities laser sources are considered single-pass or 36 bunches @ 20 MHz

Parameter	Unit	FP cavity	Single-pass	Max uncertainly				
Laser repetition frequency	MHz	40	0.0434	(locked to bunches)				
Laser output pulse energy	μJ	1.2	5000	$\pm 10\%$				
Average laser power	W	50	217	$\pm 10\%$				
$F_{rev} (Pb_{208}^{79+}\gamma 86)$	Hz	43,	373	± 0.02				
Atomic transition energy $2s_{1/2} \rightarrow 2p_{1/2}$	eV	230	.823	± 0.047				
Atomic transition energy $2s_{1/2} \rightarrow 2p_{1/2}$ Excited state lifetime (ion frame) Excited state decay length (lab frame)		76	5.6	± 0.1				
Excited state decay length (lab frame)		2.	19	± 0.01				
Max. emitted photon energy (lab frame)	keV	4	4	± 0.05				
Laser - PSI beam crossing angle	deg	2	.6	± 0.05				
Laser wavelength	nm	10	34	± 0.01				
PSI relativistic γ_{L}		96	5.3	± 0.02				
RMS momentum spread in bunch		$2 \times$	10^{-4}	$\pm 5 \times 10^{-5}$				
Laser pulse energy at IP	mJ	:	5	$\pm 10\%$				

Table 4: SPS PoP experiment parameters

GFPOP in SPS : interaction region

B. Goddard, F. Velotti, Y. Dutheil

September 17, 2019

Gamma Factory for CERN

GFPOP in SPS : interaction region

(a)

GFPOP in SPS : interaction region

B. Goddard, F. Velotti, Y. Dutheil

GFPOP in SPS interaction system

- A 2 mirrors, 4 m long Fabry Perot cavity, seeded > 50 W Yb fiber laser
- Laser frontend with tunable double FBG filter and temperature tunable CFBG.
- UHV Optical transport line and laser room in the unused side tunnel, shielded from the SPS radiations.

GFPOP in SPS interaction system

- A 2 mirrors, 4 m long Fabry Perot cavity, seeded > 50 W Yb fiber laser
- Laser frontend with tunable double FBG filter and temperature tunable CFBG.
- UHV Optical transport line and laser room in the unused side tunnel, shielded from the SPS radiations.

A. Martens, Y. Peinaud

GFPOP calendar

Phase 1 : PSI

GF Phase 1: Initial Study	2016			2017			2018			2019						
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
LHC operation													LS2			
SPS operation								LS2								
Activities		Xe ³⁹⁺ in SPS Pb ⁸¹⁺ in LHC SPS PoP Design														
Milestones		PBC GF Study Group formed						Atomic beams accelerated and stored in SPS & LHC								

Phase 2 : GFPOP in SPS

• Phase 3 : GF in LHC, reusing laser sources and IP system from GFPOP 15-87 MeV photons with Pb⁷⁹⁺ $2s \rightarrow 3p_{1/2}$ or $2s \rightarrow 2p_{3/2}$

Conclusion

- New sources of high flux and high energy photons at CERN
 - unconventional but innovative use of CERN accelerator complex
 - Opportunities with existing facilities for the HEP and broader physics community, including PWFA.
- The GF POP concept is being finalized, letter of intend for SPSC under review
- Yellow report in progress
- Gamma Factory community
 - 60+ researchers from 20+ institutions and growing.
 - Joint the effort !

home.cern

LHC scenario Pb⁷⁹⁺

Lithium like lead, lifetime in SPS $\sim 100\,\text{s}$ and $\sim 10\,\text{h}$ in LHC

 $_{/2} \rightarrow 3p_{1/2} \Delta E = 14.7 \,\mathrm{keV}$

- long decay of 0.6m
- laser : second harmonics of Yb laser
- maximum photon energy 87 MeV
- flux limited by double photon absorption process

 $_{/2} \rightarrow 2p_{1/2} \Delta E = 2.64 \,\mathrm{keV}$

- short decay of 1.5cm
- laser : Yb laser at larger angle
- maximum photon energy 15 MeV
- flux not limited

Enjoy the relativistic magic twice

In the lab frame

Optical photon of angular frequency ω travelling against the PSI is boosted in the ion frame

$$\omega' = (1+\beta)\gamma_L \omega \approx 2\gamma_L \omega$$

A photon is spontaneously emitted, isotropically in the referential of the ion. Boosting back to the lab frame

- emitted photons concentrated in $\approx 1/\gamma_{\rm L}$ in the ion beam forward direction
- angular frequency ω" of the photon propagating back along its incoming direction is boosted by another factor 2γ_L:

$$\omega"\approx 2\gamma_L\omega'=4\gamma_L^2\omega$$

Challenge laser photon sources

The main challenge is bringing high power laser system in CERN accelerator environment <=> embedded remotely controlled high reliability system high power pulsed laser at 40 MHz \rightarrow hundreds of kW Constraints ... make the challenge transfer from optical lab to accelerator tunnel

- spectral tuning
- cavity environment integration \rightarrow high radiation level
- machine integration \rightarrow beam impedance
- very limited access to the interaction point system and laser system

Challenge beam dynamics

Ion beam stability and control

- Reliable and reproducible ion excitation requires a high level of control of the ion beam
- Typical relative beam momentum stability required $\sim 10^{-5}$

Cooling and beam stability

- Possibly fast cooling, down to a few seconds, may lead to very low emittance and instability
- Equilibrium between cooling and heating processes is needed for continuous photon production

courtesy of Yann Dutheil

Challenge software tool

- Parallel development and benchmark of laser ion interaction on several modeling codes
 Currently 5 independent codes are developed
- Modelling codes are critical for optimization of beam and laser parameters
- Parallel development and benchmark of laser ion interaction on several modeling codes
 - Implementation in BDSIM and GEANT4 developments at RHUL UK by , *S. Alden, L. Nevay and S. Gibson*
 - Independent code at INFN Padova, Italy by *C. Curatolo*
 - Implementation in CAIN at the Jagiellonian University of Krakow, Poland by W. Placzek
 - Semi-analytical calculations at LAL, Paris by A. Martens
 - Python implementation at Budker Insitute, Novosibirsk, Russia by A. Petrenko
- Modelling codes are critical for optimization of beam and laser parameters

C. Curatolo *et. al*,"Novel high intensity gamma-source at CERN: the Gamma Factory Initiative", Sixth Annual Conference on Large Hadron Collider Physics (LHCP2018)

PSI productions

Transmission efficiency simulations (BREIT) of the stripper (stripping foils)

