Multistage Plasma Accelerator for GeV, ultra-low energy spread beams

Preliminary design for a 1 GeV beamline

Ángel Ferran Pousa, A. Martinez de la Ossa, R. Brinkmann, R. Assmann.

EAAC 2019, WG6-8 joint session, 18/09/19

Introduction

Plasma accelerators and energy spread

An intense **laser pulse** or **charged particle** beam is injected into a gaseous plasma.

~100 µm

Extreme accelerating fields $(\sim 100 \text{ GV/m})$ with short wavelength $(\sim 100 \mu \text{m})$ are generated behind the driver.

Accelerated beams develop a large correlated energy spread (typically 1-10%)

Introduction

Energy chirp is one of the main reasons for high energy spread in plasma accelerators

Mitigating the energy chirp

Proposed methods

Beam loading

- Flatten the accelerating fields with the witness bunch itself.
- **Problems:** .
 - Requires particular current profile. Challenging to obtain.
 - Depends on acceleration phase (high sensitivity, dephasing in laser-driven cases) •
 - Not demonstrated yet with desired performance.

Other proposals

- Modulated [R. Brinkmann et al., 2017, PRL] or tailored [A. Döpp et al., 2018, PRL] plasma • density profiles.
- Injection of a second bunch. [G. Manahan et al., 2017, Nat. Comm.] •
- Plasma dechirper. [D'Arcy et al, 2019, PRL; V. Shpakov et al, 2019, PRL; Wu et al, 2019, PRL]
- Use shorter bunches. •

How about taking advantage of the energy chirp?

- Energy chirp naturally occurs in plasma accelerators.
- Improves beam stability (hosing mitigation) via BNS damping. [T. Mehrling et al., PRL, 2017; R. Lehe et al., PRL, 2017]
- Offers new possibilities for achieving low energy spread beams:

New scheme for energy chirp compensation

Acceleration in two stages with a magnetic chicane

Potential issues

CSR and SC in the chicane

- Beam undergoes full compression ----> SC?
- Bending in the dipoles \longrightarrow CSR?

Space charge

- GeV energy, ~10 pC charge and small distance minimize its impact.
- ASTRA simulations show negligible influence.

Coherent synchrotron radiation

- Very small bending angle is needed to invert the beam $(\theta < 1^\circ)$, thanks to the large energy chirp.
- CSRtrack simulations also show negligible impact on the beam parameters.

Space charge and CSR are not an issue

Start-to-end simulations

Setup parameters for a 5 GeV accelerator

Electron beam Q = 10 pC T_{FWHM} = 5 fs I_p = 2 kA E = 250 MeV $\varepsilon_n = 0.5 \ \mu m rad$ $\frac{\sigma_{\gamma}}{\gamma} = 0.5\%$

Laser pulses E = 40J $a_0 = 3$ $w_0 = 50 \ \mu m$ $T_{FWHM} = 50 \ fs$ Plasma stages $n_p = 10^{17} \text{ cm}^{-3}$ Parabolic profile $L_p = 8 \text{ cm}$ Plasma lenses K = 3000 T/m L = 6.6 cm $n_p = 10^{15}$ cm⁻³ **Chicane** $R_{56} = 0.067 \text{ mm}$ $L_m = 20 \text{ cm}$ $\theta = 0.6^{\circ}$ B = 0.54 TL = 1.2 m

Based on simulations from J. Zhu for possible ARES linac upgrade

Start-to-end simulations

Results

- Beam maintains sub-micron emittance.
- Energy chirp is successfully compensated in second stage.
- Final energy spread:
 - 0.12% (total)
 0.028% (0.1µm slice) or 2.8x10⁻⁴
- Final energy of 5.5 GeV.

5.5 GeV. FEL-range values

Start-to-end simulations

Results compared against single-stage acceleration

Final bunch, compared against a case with acceleration in a single stage

- Energy spread is reduced by a factor 20.
- Final beam is not flat in energy due to nonlinear contributions in the chicane (T₅₆₆).
- Current profile is maintained.
- This bunch would be well suited for FEL applications.

Comparison to current state-of-the art experiments

Beam parameters reach FEL regime

Comparison to current state-of-the art experiments

Beam parameters reach FEL regime

Beyond the first conceptual beamline design

Beyond the first conceptual beamline design

A (very preliminary) proof-of-concept 1 GeV design

1 GeV beamline

Start-to-end simulations with idealized beam

1 GeV beamline

Due to large peak at head and tail. In general ~1 kA.

Beam evolution on each plasma stage

Initial vs final beam parameters:

Initial

11.3

3.3

1

0.1

0.3

0.3

0.3/0.3

0.3/0.3

Final

11.3

3.3

2.6

1

0.5

0.62 / 0.62

0.43/0.43

0.14 (avg) /

0.06 (best)

*100 nm slices

Achieved 1 GeV final energy with sub-micron emittance, sub-percent total energy spread and sub-per-mille slice energy spread

Based on parameters achievable by the ARES lineac

- A new scheme for chirp mitigation in plasma accelerators has been presented.
- With this method, the beam is dechirped while being further accelerated and preserving its emittance.
- Potential issues such as CSR and SC have been shown to have negligible impact.
- Simulations show that FEL-ready beams could be produced, with multi-GeV energy, sub-micron emittance and sub-per-mille energy spread.
- Presented preliminary 1 GeV beamline with less stringent requirements, feasible with current laser systems.
 - Successful coupling of multiple plasma stages with ~10 m separation.
 - Sub-micron emittance, sub-percent energy spread and up to sub-permille slice energy spread.

Thank you