Target heating in the relativistic transparency regime

Emma-Jane Ditter
Imperial College London
Motivation

Experimental Aims

• Ion acceleration from thin foils
• Explore intersection between relativistic transparency and opaque acceleration mechanisms
• Use optical diagnostics to understand the plasma dynamics

Simulation Aims

• Confirm experimental conclusions
• Track electron heating as a function of density
Experimental Set-Up

- Energy: ~6J on Target
- Pulse Length: 45fs
- Intensity: 3×10^{20} Wcm$^{-2}$
- a_0: 13

- Amorphous Carbon Targets
- Target thickness range: 2 - 100nm
- Contrast of 10^{14}
Experimental Results: Transmission Screen

Linear Polarisation

Circular Polarisation

Blank Shot 2nm 5nm 10nm 15nm 25nm 50nm 100nm
Experimental Results: Transmission Screen

- Pinhole effect occurs
- Targets $\leq 15\text{nm}$ go transparent
- Radiation emitted from the rear surface
- Targets $\geq 25\text{nm}$ remain overdense
Experimental Results: Transmitted Energy

- Up to 50% transmission for ≤ 15 nm - direct laser light

- Percent level transmission for ≥25nm - secondary emitted radiation
Simulation Parameters

- EPOCH 2D3V code developed by Warwick
- Completed target thickness scan 2nm-100nm
- Linear and Circular polarisation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation Resolution</td>
<td>0.6 nm</td>
</tr>
<tr>
<td>Box size (\hat{x}, \hat{y})</td>
<td>3 μm x 10 μm</td>
</tr>
<tr>
<td>Peak a_0</td>
<td>17</td>
</tr>
<tr>
<td>Initial electron density (n_e/n_{crit})</td>
<td>685</td>
</tr>
<tr>
<td>Time of peak intensity</td>
<td>44 fs</td>
</tr>
</tbody>
</table>
Electron Density

Linear Polarisation:

- **5nm**: density drops from $685n_{\text{crit}}$ to $\sim20n_{\text{crit}}$ by 27fs, underdense by 32fs
- **10nm**: density drops from $685n_{\text{crit}}$ to $\sim8n_{\text{crit}}$ by 51fs
- **50nm**: remains overdense and accelerates electron bunches of density $\sim1n_{\text{crit}}$, density drops to $\sim30n_{\text{crit}}$ at 96fs
Electron Density

5nm

Circular Polarisation:

- 5nm: at 27fs the density remains at $120n_{\text{crit}}$ compared to $\sim 10n_{\text{crit}}$ for linear polarisation. Underdense by 51fs.

- 10nm: by 51fs the front surface has moved 500nm so target no longer normal to incident radiation.

- 50nm: remains overdense. Critical surface has moved by 300nm at 96fs.
Electron Density

- Average electron density in focal spot
- ——— Linear Polarisation
- - - - Circular Polarisation
- 2 - 10nm go transparent
- Targets \geq 25nm remain overdense
Transmitted Electric Field

- Sampled laser electric field at rear of simulation box
- See step-like delay in transparency until 15nm
- Oscillating electric field also for thicker targets
Transmitted Electric Field

- Sampled laser electric field at rear of simulation box
- See step-like delay in transparency until 15nm
- Oscillating electric field also for thicker targets
- Coherent transition radiation
Electron Spectrum

- Electron energies on laser axis
- Sudden increase in hot electrons in the forward direction
- At late times electrons transfer energy to ions or leave the box
Electron Spectrum

Target heating in the relativistic transparency regime

Emma Ditter
Electron Spectrum

- Maximum electron energies seen for the 10nm target irradiated by a linearly polarised pulse
- Circular polarisation has lower electron temperatures (∼75% of linear)
- Symmetric distribution for targets ≥ 25nm

- **Is this an indication of transparency?**
Electron Spectrum

- Maximum electron energies seen for the 10nm target irradiated by a linearly polarised pulse

- Circular polarisation has lower electron temperatures (\(\sim 75\%\) of linear)

- Symmetric distribution for targets \(\geq 25\)nm

- **Is this an indication of transparency?** Yes
Electron Temperature

- Fit an exponential to the electron spectrum
- Peak temperature reached for 10nm target with linear polarisation
- Approximately same temperature plasma for thinner targets and linear/circular polarisation
- Similar heating rates of almost all linear polarised pulses
Electron Temperature

- Fit an exponential to the electron spectrum
- Peak temperature reached for 10nm target with linear polarisation
- Approximately same temperature plasma for thinner targets and linear/circular polarisation
- Similar heating rates of almost all linear polarised pulses
Electron Temperature

- Fit an exponential to the electron spectrum
- Peak temperature reached for 10nm target with linear polarisation
- Approximately same temperature plasma for thinner targets and linear/circular polarisation
- Similar heating rates of almost all linear polarised pulses
Electron Temperature

- Fit an exponential to the electron spectrum
- Peak temperature reached for 10nm target with linear polarisation
- Approximately same temperature plasma for thinner targets and linear/circular polarisation
- Similar heating rates of almost all linear polarised pulses
Strong target heating causes targets < 25nm to go transparent

Electron bunches of density $\sim 1n_{\text{crit}}$ accelerated off 50nm target

Temporal delay in transparency by ~ 15fs per thickness increment

Electron temperatures up to 1.7MeV measured in simulations

Big difference in plasma temperatures for different polarisations - up to 50% for ≥ 15nm targets
Acknowledgements

ASAIL Collaborators:
G. Hicks1, O. Ettlinger1, D. Doria2, L. Romagnani3, H. Ahmed2, P. Martin2, S. Williamson4, A. McIlvenny2, G. Scott5, N. Booth5, D. Neely5, P. McKenna4, M. Borghesi2 and Z. Najmudin1

1. John Adams Institute of Accelerator Science, Blackett Laboratory, Imperial College London, SW7 2AZ,
2. Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, UK.
3. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France,
4. SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK.
5. Central Laser facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, UK