

Imperial College London

Target heating in the relativistic transparency regime

Emma-Jane Ditter Imperial College London

Motivation

Experimental Aims

- Ion acceleration from thin foils
- Explore intersection between relativistic transparency and opaque acceleration mechanisms
- Use optical diagnostics to understand the plasma dynamics

Simulation Aims

- Confirm experimental conclusions
- Track electron heating as a function of density

Experimental Set-Up

- Energy: ~6J on Target
- Pulse Length: 45fs
- Intensity: 3 x 10²⁰ Wcm⁻²
- a₀: 13

- Amorphous Carbon Targets
- Target thickness range:
 2 100nm
- Contrast of 1014

Experimental Results: **Transmission Screen**

Linear Polarisation 1ω 100nm Blank Shot 15nm 50nm 2nm 5nm 10nm 25nm **Circular Polarisation** 1ω 5nm

Blank Shot

2nm

10nm

15nm

25nm

50nm

100nm

Experimental Results: Transmission Screen

- Pinhole effect occurs
- Targets \leq 15nm go transparent
- Radiation emitted from the rear surface
- Targets \geq 25nm remain overdense

Experimental Results: Transmitted Energy

- Up to 50% transmission for \leq 15 nm direct laser light
- Percent level transmission for \geq 25nm secondary emitted radiation

Simulation Parameters

• EPOCH 2D3V code developed by Warwick

UNIVERSITY OF WARWICK

- Completed target thickness scan 2nm-100nm
- Linear and Circular polarisation

Simulation Resolution	0.6 nm
Box size (\hat{x} , \hat{y})	3 µm × 10 µm
Peak a_0	17
Initial electron density (n_e/n_crit)	685
Time of peak intensity	44 fs

Electron Density

Linear Polarisation:

- 5nm: density drops from 685n_crit to ~20n_crit by 27fs, 10nm underdense by 32fs
- 10nm: density drops from 685n_crit to ~8n_crit by 51fs
- 50nm: remains overdense and accelerates electron bunches of density ~1n_crit, density drops to ~30n_crit at 96fs

Electron Density

Circular Polarisation:

- 5nm: at 27fs the density remains at 120n_crit compared to ~ 10nm 20n_crit for linear polarisation. Underdense by 51fs
- 10nm: by 51fs the front surface has moved 500nm so target no longer normal to incident 50nm radiation.
- 50nm: remains overdense. Critical surface has moved by 300nm at 96fs

Electron Density

- Average electron density in focal spot
- — Linear Polarisation
- - - Circular Polarisation
- 2 10nm go transparent
- Targets ≥ 25nm remain overdense

Transmitted Electric Field

- Sampled laser electric field at rear of simulation box
- See step-like delay in transparency until 15nm
- Oscillating electric field also for thicker targets

Transmitted Electric Field

- Sampled laser electric field at rear of simulation box
- See step-like delay in transparency until 15nm
- Oscillating electric field also for thicker targets
- Coherent transition radiation

Target heating in the relativistic transparency regime

Emma Ditter

- Maximum electron energies seen for the 10nm target irradiated by a linearly polarised pulse
- Circular polarisation has lower electron temperatures (~75% of linear)
- Symmetric distribution for targets \geq 25nm
- Is this an indication of transparency?

- Maximum electron energies seen for the 10nm target irradiated by a linearly polarised pulse
- Circular polarisation has lower electron temperatures (~75% of linear)
- Symmetric distribution for targets \geq 25nm
- Is this an indication of transparency?

- Fit an exponential to the electron spectrum
- Peak temperature reached for 10nm target with linear polarisation
- Approximately same temperature plasma for thinner targets and linear/ circular polarisation
- Similar heating rates of almost all linear polarised pulses

- Fit an exponential to the electron spectrum
- Peak temperature reached for 10nm target with linear polarisation
- Approximately same temperature plasma for thinner targets and linear/ circular polarisation
- Similar heating rates of almost all linear polarised pulses

- Fit an exponential to the electron spectrum
- Peak temperature reached for 10nm target with linear polarisation
- Approximately same temperature plasma for thinner targets and linear/ circular polarisation
- Similar heating rates of almost all linear polarised pulses

- Fit an exponential to the electron spectrum
- Peak temperature reached for 10nm target with linear polarisation
- Approximately same temperature plasma for thinner targets and linear/ circular polarisation
- Similar heating rates of almost all linear polarised pulses

Summary

- Strong target heating causes targets < 25nm to go transparent
- Electron bunches of density $\sim 1n_{crit}$ accelerated off 50nm target
- Temporal delay in transparency by \sim 15fs per thickness increment
- Electron temperatures up to 1.7MeV measured in simulations
- Big difference in plasma temperatures for different polarisations up to 50% for \geq 15nm targets

Acknowledgements

ASAIL Collaborators:

G. Hicks¹, O. Ettlinger¹, D. Doria², L. Romagnani³, H. Ahmed², P. Martin², S. Williamson⁴, A. McIlvenny², G. Scott⁵, N. Booth⁵, D. Neely⁵, P. McKenna⁴, M. Borghesi² and Z. Najmudin¹

- 1. John Adams Institute of Accelerator Science, Blackett Laboratory, Imperial College London, SW7 2AZ,
- 2. Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN, UK.
- 3. LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France,
- 4. SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK.
- 5. Central Laser facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, UK