New Vulcan PetaWatt Beamline: Ultra-broadband, picosecond OPCPA FrontEnd

- EAAC 2019 Workshop -

Mario Galletti1,2
G. Archipovaite1, P. Oliveira1, M. Ahmad1, M. Galimberti1, I. Musgrave1, C. Hernandez-Gomez1

1Central Laser Facility, STFC, RAL, Chilton, Didcot, Oxfordshire, OX11 0QX, UK
2GoLP / Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Lisbon, Portugal
Vulcan laser facility
Motivation for the new PW beamline

VOPEL: Fully OPCPA, PW beamline
Overview and its design

Ultra-broadband, ps Front End
Current status of the research

Summary & future plans
Nd:Glass laser system delivering 8 beams. It is based on the CPA technique with an OPCPA Front End.

TAW

Long Pulse:
6 beams, 250J, 0.5-6ns
Short Pulse:
~70J, 1ps or 200J, 10ps

TAP

Long Pulse:
250J, 1ns
Short Pulse:
~500J, 500fs
Combining two PW beamlines will allow us:

- **Pump-probe** experiments
- Combining e\(^-\) and p\(^+\)
- Space Radiation Reproduction
- New **imaging** capability
- Betatron/ X-ray Imaging

Adopting only the auxiliary PW beam line will allow us:

- Betatron imaging
- X-ray imaging
- Acceleration experiments: e\(^-\), p\(^+\) and light ions
VOPEL beamline site

New Fully OPCPA TAP

- **Rep. Rate:** 5min
- **Wavelength:** 880nm
- **Pulse energy:** 30J
- **Pulse duration:** 30fs
Contents

- **Vulcan laser facility**
 Motivation for the new PW beamline

- **VOPEL: Fully OPCPA, PW beamline**
 Overview and its design

- **Ultra-broadband, ps Front End**
 Current status of the research

- **Summary & future plans**
Overview of the PW Beamline

Sketch of the new PW beamline

Detailed sketch of the new PW beamline
Overview of the PW Beamline

Sketch of the new PW beamline

- **Ps Front end**
 - 10 ps
 - 1 mJ
 - 100 Hz

- **Stretcher**
 - 3 ns
 - 0.1 mJ
 - 100 Hz

- **Ns Front end**
 - 3 ns
 - 1 J
 - 2 Hz

- **Power amplifier 1**
 - 3 ns
 - 7 J
 - 5 mins

- **Power amplifier 2**
 - 3 ns
 - 50 J
 - 5 mins

- **Compressor**
 - 30 fs
 - 30 J
 - 5 mins
 - 880 nm

High energy amplification stage 1

- **Seed**
 - 3 ns, ~1 J

- **Pump Nd:glass rods**
 - 5 min rep. rate, 30 J, 1053 nm, 3 ns

- **SHG pump in KDP**
 - 60% eff, 18 J.

- **Amplified signal**
 - 7 J

High energy amplification stage 2

- **Seed**
 - 3 ns, ~7 J

- **Pump Nd:glass disk (108 mm)**
 - 20 min rep. rate, 220 J, 1053 nm, 3 ns

 Upgraded to **air cooled disk** amplifier.

- **SHG pump in KDP**
 - 65%, 140 J

- **Amplified signal**
 - 50 J
Overview of the PW Beamline

Sketch of the new PW beamline

High energy Ns Compressor

- Gold gratings
- 1100 Grooves/mm
- Transmission 60%

1% of the beam dedicated to the diagnostic

Compressor Parameters

- 30 J, 30 fs
- 10 ps, 1 mJ, 100 Hz
- 3 ns, 0.1 mJ, 100 Hz
- 3 ns, 1 J, 2 Hz
- 3 ns, 7 J, 5 mins
- 3 ns, 50 J, 5 mins
- 30 fs, 30 J, 5 mins, 880 nm
Overview of the PW Beamline

Sketch of the new PW beamline

New interaction Chamber: Betatron Imaging Setup
Contents

- **Vulcan laser facility**
 Motivation for the new PW beamline

- **VOPEL: Fully OPCPA, PW beamline**
 Overview and its design

- **Ultra-broadband, ps Front End**
 Current status of the research

- **Summary & future plans**
Ultra-broadband ps FrontEnd

- Rep. Rate: 100 Hz
- Wavelength: 880nm
- Pulse energy: ~1.5 mJ
- Pulse duration: 10 ps
Goal: sub-30 fs, 1 mJ, 160 nm @880 nm.

The ps NOPA4 stage deliver pulses:

- up to **1.5 mJ**, down to **15 fs**, >160 nm.
- The NOPA4 efficiency is ~15%.
Goal: sub-30 fs, 1 mJ, 160 nm @880 nm.

- The temporal jitter influences the first two NOPA stages, which could be corrected by minor adjustment of the delay between signal and pump.

- **Active stabilisation** on going.

- The non-compensation of the 3rd order spectral phase, visible with **pre-post pulses**, creates these instabilities in the temporal length.

- **Dazzler** implemented but not a feedback loop.
We presented **VOPEL: a fully OPCPA, PW beamline** for the Vulcan laser facility.

The full beamline will be ready mid-2021.

The ps Front End is on commissioning:

~1.5 mJ, 100 Hz, compressed to 18 fs, BW~170 nm centred @880nm.

On time of the project plan schedule

Compressor fully designed, large crystal on order.
<table>
<thead>
<tr>
<th>Laser</th>
<th>Mechanical</th>
<th>Electrical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munadi Ahmad</td>
<td>Paul Johnson</td>
<td>Paul Amos</td>
</tr>
<tr>
<td>Giedre Archipovaite</td>
<td>Andrew Stallwood</td>
<td>Rich Bickerton</td>
</tr>
<tr>
<td>Andrew Frackiewicz</td>
<td>Jonathan Saa</td>
<td>Mark Dearing</td>
</tr>
<tr>
<td>Mario Galletti*</td>
<td>Steve Blake</td>
<td>Jorge Suarez Merchan</td>
</tr>
<tr>
<td>Steve Hawkes</td>
<td>Brian Wyborn</td>
<td>Adrian Thomas</td>
</tr>
<tr>
<td>Ian Musgrave</td>
<td></td>
<td>Tinesimba Zata</td>
</tr>
<tr>
<td>Pedro Oliveira</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dave Pepler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waseem Shaikh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trevor Winstone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Target Area</td>
<td>Sponsor</td>
</tr>
<tr>
<td>Nicola Booth</td>
<td>Rob Clarke</td>
<td>Cristina Hernandez-Gomez</td>
</tr>
<tr>
<td></td>
<td>Rob Heathcote</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dave Neely</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Margaret Notley</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>