

Dose controlled irradiation experiments with laser-accelerated protons at Draco Petawatt

<u>F.-E. Brack</u>, F. Kroll, J. Metzkes-Ng, L. Obst-Hübl, C. Bernert, S. Kraft, H.-P. Schlenvoigt, L. Gaus, E. Beyreuther, L. Karsch, J. Pawelke, K. Zeil, U. Schramm

Laser-driven dose delivery for 3D in vivo irradiation

exponentially decaying, broad energy spectrum

Page 2

EAAC Elba 2019

angular spectrum

Half-angle divergence ~ 20°

5×5×5 mm³

Member of the Helmholtz Association

Pulsed high field magnets for medical beam line

Pulsed high field magnets for medical beam line

Quadrupole

250 T/m

focal length

$$f_{\rm Q} = \frac{pr}{qlB}$$

⊇ade 4 EAAC Elba 2019 $f_{\rm S} = \frac{4p^2}{q^2 B^2 l}$

- Solenoids suitable for broad energy range & large angular distribution of TNSA protons
- Pulsed power portfolio @HZDR for beamline optics (Solenoid, Quadrupoles, Dipole) pulsed power Gantry
 - U Masood et al 2017 Phys. Med. Biol.

Solenoid

focal length

Chromatic focusing

- Energy selection via input current
- Beam guiding
- collimation of 70 MeV

- 40 mm open aperture
 - high transmission efficiency due to high angular acceptance
- $B_{max} = 21 \text{ T} (I_{max} = 24 \text{ kA})$
- few years operation (1000+ pulses)

Member of the Helmholtz Association

Laser-driven dose delivery for 3D in vivo irradiation

Dual solenoid setup focuses protons of two independent energies

Page 5

EAAC Elba 2019

Spectral shaping to a homogeneous depth dose distribution
RCF #

Requested output

Member of the Helmholtz Association

Beamline modelling and experimental verification

Parameter prediction based on particle tracing simulations with GPT

- Tunable beamline allows fast adaptation to a requested output, with GPT model we can predict:
 - distances, solenoid currents (I_{S1/2}), transmission efficiency
 - Generate output for Monte Carlo dose simulations (e.g. TOPAS)
- Pulsed beamline/magnets modelling complicated, no detailed 3D B-field measurement
- Measurement along main axis legitimates further simulations with GPT

Beamline modelling and experimental verification

Finding translation factors from simulation model to experiment

Three independent methods, all single-shot, in sight of the pulsed source and solenoids and are based on particle transport

Beamline modelling and experimental verification

Finding translation factors from simulation model to experiment

Focused proton energy (detection via scintillator at P4) to solenoid current Collimated beams at P2 & P3, beam size evaluation for surrounding energies

Simulated proton spectrum to measured time-of-flight (diamond detector at P3)

Member of the Helmholtz Association

EAAC Elba 2019

Page 8

Shaping of laser-driven proton beams

Shaping of laser-driven proton beams

After **spectral** homogenization → **lateral** homogenization

focus in front of irradiation site & energy selecting aperture at P4

Introduce scatter foil at P4

scatter foil without scatter foil with

Page 10 EAAC Elba 2019 Member of the Helmholtz Association

Shaping of laser-driven proton beams

Combining **spectral** (2 solenoids) and **lateral** (scatter foil, focal distance, energy selecting aperture) **homogenization** and final aperture of irradiation sample

Member of the Helmholtz Association

Pulsed high-field dose delivery experiments at Draco

Pulsed high-field beamline enables 3D dose delivery for sophisticated radiobiological experiments

- First irradition studies with tumor spheroids and zebrafish embryos have been performed
- too low dose for irradiation damage to the ZF embryos, spheroids show a DNA-DSB rich ring induced by laserdriven protons

Zebrafish embryo (in-vivo)

Tumorspheroids (*in-vitro*)

Publication to be submitted

Page 12 EAAC Elba 2019

Laser-driven dose delivery for 3D in vivo irradiation

Currently: Radiobiological requirements close to limits of the beamline

- required dose rate of 1 Gy/min within 5x5x5 mm³ sample volume and integrated dose (minimum 10 Gy)
- Iow repetition rate pulser combined with strong ohmic heating/long cooling time for solenoids are major bottlenecks
- *Development*: Higher dose rates (and integrated dose) via
 - higher proton number/energy from laser driven proton source
 - high repetition rate pulse generators and solenoids

High rep-rate magnet development

Development:

- cooled solenoids (with channels for cold air/liquid between winding layers)
- Thyristor-based pulse generator with energy recuperation at 1 Hz

Cooling Concept

Prototype

Testing

Page 14 EAAC Elba 2019

Member of the Helmholtz Association

Thank you for your attention!

Page 15 EAAC Elba 2019