# Experimental progress towards an all-optical Thomson source for X-ray flourescence imaging



Kristjan Põder<sup>§</sup>, Simon Bohlen<sup>§</sup>, Theresa Staufer<sup>‡</sup>, Martin Meisel<sup>§</sup>, Theresa Brümmer<sup>‡</sup>, Florian Grüner<sup>‡</sup>, Jens Osterhoff<sup>§</sup>

<sup>§</sup>Deutsches Elektronen Synchrotron DESY, Notkestr. 85, Hamburg, Germany <sup>‡</sup>Universität Hamburg, Mittelweg 177, Hamburg, Germany

Contact: kristjan.poder@desy.de

# OESY.

# X-Ray Flouresence Imaging (XFI)

#### **Medical imaging techniques**

|                     | PET[1]           | CT[2]      | MRI[3]     | XFI[4]           |
|---------------------|------------------|------------|------------|------------------|
| Temporal resolution | poor             | high       | high       | high             |
| Spatial resolution  | poor (4-5mm)     | high (1mm) | high (1mm) | high ( $< 1$ mm) |
| Sensitivity         | high             | low        | low        | high             |
| Dose exposure       | moderate to high | high       | none       | low              |

### Unique advantages of XFI for medical imaging

- Low reabsorption in human tissue due to high working point of  ${\sim}70~\text{keV}$
- High sensitivity
- No gold in the human body no false detection
- GNPs can be attached to several peptides and antibodies
- GNPs are stable: enabling the possibility for pharmacokinetics
- Spatial resolution only limited by x-ray beam diameter

# **Thomson Scattering**

Energy of Thomson scattered X-Ray is given by:

$$\omega_X = \frac{2\gamma^2 \left(1 - \beta \cos \alpha\right)}{1 + a_0^2 / 2 + \gamma^2 \theta^2} \,\omega_L$$

## XFI with GNPs requires source with:

- Low bandwidth (< 15 %)[5]: BW  $\simeq 2\sigma_{\gamma}$ [6]
- Small source size and divergence:  $\theta_S \sim \gamma^{-1}$
- Large flux and rep. rate:  $N_X \propto Q N_{\rm osc} a_0^2 \sigma(\theta {\rm obs})$
- Compactness and low cost
- X-Ray energy  $\hbar\omega_X \sim 90 \,\mathrm{keV} \rightarrow \gamma \simeq 120$



*Figure 4: Geometry of Thomson scattering* 

#### While X-Ray tubes are cheap & compact and synchrotrons have



desirable beam parameters, all-optical Thomson sources fulfill all criteria!

# **Experimental setup**

Flexible setup to develop and demonstrate all-optical XFI X-Ray source



#### Enclosed differential pumping allows 10 Hz repetition rate





Compact, aberration-free, high

gradient e-beam optics [7, 8, 9]

LySo scintillator with  $10 \ \mu m$  optical resolution

**Figure 11:** CAD rendering of the differential pumping cube



*Figure 12: Pressure in the chamber with the pumping cube* 

• Cube with 2 mm holes, differentially

# Summary and future

Experimental campaign underway towards proof-of-principle XFI experiments

#### **Milestones reached**

- Differential pumping setup for 10 Hz gas-jet operation
- Stable, reliable electron beam source commissioned
- First XFI signal from all-optical X-Ray source measured

 Plasma lenses relax requirements on electron beam energy spread for XFI

#### Next steps:

- Installing and commissioning APL into Thomson source
- Demonstrate X-Ray spectrum filtering with APL
- Pushing for system-wide 10 Hz operation
- XFI measurements of medical samples

#### $E_{\gamma}$ [keV]

**Figure 10:** APLs allow for spectral filtering of Thomson spectra

Chromatic focussing effect can be used to spectrally filter X-Ray spectrum: relaxed requirements for electron beams!

# References

- [1] G. B. Saha, *Basics of PET Imaging*. Springer (2010).
- 2] http://www.ctlab.geo.utexas.edu/about-ct/, Accessed: 2019-09-09.
- [3] J. L. Prince, J. Links, *Medical Imaging Signals and Systems*. Pearson (2014).
- [4] N. Manohar, et al., *Sci. Rep.* **6**(1), 22079 (2016).
- [5] F. Grüner, et al., *Sci. Rep.* **8**(1), 16561 (2018).
- [6] S. G. Rykovanov, et al., *PRAB* **19**, 030701 (2016).
- [7] J. van Tilborg, et al., *PRL* **115**(18), 184802 (2015).
- [8] Röckemann, et al., *PRAB* **21**(12), 122801 (2018).
- [9] C. A. Lindstrøm, et al., *PRL* **121**(19), 194801 (2018).
- [10] P. Seller, et al., *J. Instr.* **6**(12), C12009 (2011).

[11] G. Golovin, et al., *Sci. Rep* **6**, 24622 (2016).

pumped

- Surrounding vacuum pressure below  $3 \times 10^{-4}$  mbar with  $10 \, {\rm Hz}$  gas pulsing
- Allows for systematic studies of LWFA at 10 Hz
- Forms a robust and reliable 10 Hz electron beam source

# **PLASMED-X** project



HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt