Progress towards high-repetition-rate plasma accelerators

Simon Hooker, Aarón Alejo, Chris Arran, Alexander von Boetticher, James Cowley, James Holloway, Jakob Jonnerby, Alex Picksley, Aimee Ross, Rob Shalloo & Roman Walczak John Adams Institute for Accelerator Science & Department of Physics, University of Oxford

Laura Corner, Harry Jones & Lewis Reid Cockcroft Institute, University of Liverpool

Nicolas Bourgeois & Chris Thornton *Rutherford Appleton Laboratory*

Linus Feder, George Hine & Howard Milchberg *University of Maryland*

Outline

- Multi-pulse laser wakefield acceleration
- Controlled injection
- Novel plasma channels

This work was supported by:

- Science and Technology Facilities Council [Grant Nos ST/M50371X/1, ST/N504233/1, ST/ P002048/1, ST/R505006/1]
- Engineering and Physical Sciences Research Council [Grant Nos EP/N509711/1]
- Helmholtz Association of German Research Centres [Grant No. VH-VI-503]
- Air Force Office of Scientific Research, Air Force Material Command, USAF [Grant Nos FA8655-13-1-2141 and FA9550-18-1-7005]
- Dept. of Homeland Security [Grant No. 2016DN077ARI104]
- National Science Foundation [Grant No. PHY1619582]
- The plasma HEC Consortium EPSRC grant number EP/L000237/1
- ARCHER UK National Supercomputing Service
- CLF and the Scientific Computing Department at RAL for the use of SCARF-LEXICON computer cluster

Multi-pulse laser wakefield acceleration

Multi-pulse laser wakefield acceleration

S.M. Hooker et al. J. Phys. B 47 234003 (2013)

- Drive wakefield with train of low-energy laser pulses
- Resonant excitation if pulse spacing matched to plasma period
- Not a new idea
 - Many theory papers published in 1990s
 - Related work for PWFAs

MP-LWFAs: Key features

UNIVERSITY OF

OXFORE

Proof-of-principle demonstration

Observation of wakefields driven by pulse trains

J. Cowley et al. Phys. Rev. Lett. 119 044802 (2017)

$$\left[\frac{\delta n_{\rm e}}{n_{\rm e0}}\right]_N = \left[\frac{\delta n_{\rm e}}{n_{\rm e0}}\right]_{N=1} \times \left|\frac{\sin\left(\frac{1}{2}N\omega_{\rm p0}\delta\tau\right)}{\sin\left(\frac{1}{2}\omega_{\rm p0}\delta\tau\right)}\right|$$

- Measurements in excellent with linear theory
- First step towards energy recovery!
 - Wake amplitude reduced by (44 ± 8)%
- Resonant excitation for $N \approx 7$ pulses clearly observed

Measurements of plasma wave decay

 If wake decay dominated by ion motion then max no. useful pulses approx.

$$\frac{\tau_{pi}}{\tau_{pe}} = \frac{\omega_{pe}}{\omega_{pi}} = \sqrt{\frac{1}{Z} \frac{M_i}{m_e}}$$

- Recent experiments with Astra-Gemini TA3 laser at CLF show:
 - Timescale for wake decay consistent with ion plasma freq
 - $\Rightarrow N_{\max} \approx 50 100$

 Hydrogen

 P:
 20 mbar

 Tpe:
 110 fs

 Tpi:
 4.7 ps

Controlled injection

Two-pulse ionization (2PII)

- Based on plasma photocathode concept
 - Hidding et al. PRL **108** 035001 (2012)
- a₀ ~ 1 driver excites quasilinear wakefield
- Tightly-focused injector
 - ionizes dopant
 - enhances wakefield
 - diffracts rapidly
- PIC simulations show injected bunch with:
 - E ≈ 370 MeV
 - $\Delta E / E \approx 2\%$
 - $\epsilon_{n,rms} \approx 2.0 \ \mu m$
- In 2013 paper we suggested
 SSTF could reduce ΔE / E and ε_{n,rms}

- Standard SSTF:
 - Transversely-chirped pulse reduces local bandwidth
 - Reduces effective z_R by factor ~ 10
 - Suffers from PFT

- Standard SSTF:
 - Transversely-chirped pulse reduces local bandwidth
 - Reduces effective z_R by factor ~ 10
 - Suffers from PFT

- Standard SSTF:
 - Transversely-chirped pulse reduces local bandwidth
 - Reduces effective z_R by factor ~ 10
 - Suffers from PFT
- We use an annular beam & a radial chirp
 - Avoids PFT

Adams Institute for Accelerator Science

- Rapid injector diffraction, gets injector out of way
- Control of injector $v_g \Rightarrow$ control injection of electrons into phase space

- Preliminary PIC simulations for particle driver show factor ~ 10 reduction in emittance:
 - TH: ε_{n,rms} ≈ 40 nm
 - ARC: ε_{n,rms} ≈ 5 nm
- Very linear energy chirp
 - Slice energy spread as low as 0.02%
 - Could be de-chirped?
- Could be adapted to other ionization injection schemes
 - ReMPI scheme
 - Two-colo(u)r injection
 - etc...

15 - 21 Sep 2019

HOFI plasma channels

Why are new waveguides needed?

- Lower plasma density
 - 10 GeV stages require n_e ≈ 10¹⁸ cm⁻³
 → ≈ 10¹⁷ cm⁻³
- Higher pulse repetition rate
 - Roadmaps require $f_{rep} \rightarrow kHz$ range
- Capillary discharge waveguides:
 - Operated down to $n_{\rm e} \approx 10^{17} \, {\rm cm}^{-3} \dots$
 - ... at $f_{rep} = 1 \text{ kHz}$

A. J. Gonsalves *et al. J. Appl. Phys.* **119** 033302 (2016)

- Use of additional laser heater gives deeper channels
 - N. A. Bobrova et al. PoP 20 020703 (2013)
 - A. J. Gonsalves et al. PRL **122** 084801 (2019)

D. Spence and S. Hooker, *Phys Rev E* **63** 015401 (2000) A. Butler *et al.*, *Phys Rev Lett* **89** 185003 (2002)

In but, long-term operation at kHz repetition rates when guiding multi-joule laser pulses will be challenging!

Hydrodynamic plasma channels

- Attractive for high repetition rates since free-standing and "indestructible"
- Traditionally plasma column is heated collisionally:
 - Durfee & Milchberg, PRL 71 2409 (1993)
 - Volfbeyn *et al*. *POP* **6** 2269 (1999)
- Collisional heating requires high density for fast heating
 - Limits axial density to ~ 10¹⁸ cm⁻³

HOFI plasma channels

- Optical field ionization gives:
 - Hot electrons (10 1000 eV)
- Electron energy controlled by polarization
- Heating independent of density \Rightarrow **low**

density channels

- IST & Strathclyde groups have demonstrated generation of short channels by a spherical lens:
 - N. Lemos et al. Phys Plasm. 20 063102 (2013)
 - N. Lemos et al. Phys Plasm. 20 103109 (2013)
 - N. Lemos et al. Nat. Sci. Rep. 8 3165 (2018)

16 mm long HOFI channels: Guiding

- Experiments formed with Astra-Gemini TA2 laser
- Guided beam injected into channel after delay τ = 1.5 ns
- $P_{\text{cell}} = 60 \text{ mbar}$
- On-axis density $n_e(0) \approx 6.5 \text{ x}$ 10¹⁷ cm⁻³
- Guiding over 14.5 z_R (16 mm)

16 mm long HOFI channels: Guiding

- Experiments formed with Astra-Gemini TA2 laser
- Guided beam injected into channel after delay τ = 1.5 ns
- $P_{\text{cell}} = 60 \text{ mbar}$
- On-axis density n_e(0) ≈ 6.5 x 10¹⁷ cm⁻³
- Guiding over 14.5 z_R (16 mm)

R.J. Shalloo et al. PRAB, 22 041302 (2019)

16 mm long HOFI channels: Guiding

R.J. Shalloo et al. PRAB, 22 041302 (2019)

Low-power guiding *N*: 165 consecutive shots

UNIVERSITY OF

OXFORD

16 mm long HOFI channels: Interferometry

R.J. Shalloo et al. PRAB, 22 041302 (2019)

- Interferometry shows channel formation over few ns with:
 - $n_{\rm e}(0)$ as low as 1 × 10¹⁷ cm⁻³
 - 20 µm WM < 40 µm

See Alex Picksley's poster Mon poster 201

UNIVERSITY OF

OXFORD

100 mm long, low-density HOFI channels

 Experiments performed with Astra-Gemini TA3 laser

100 mm long, low-density HOFI channels

 Experiments performed with Astra-Gemini TA3 laser

100 mm long, low-density HOFI channels

- Experiments performed with Astra-Gemini TA3 laser
- Guiding over 100mm observed
- Interferometry shows $n_e(0) \approx 1 \times 10^{17} \text{ cm}^{-3}$
- Power attenuation length $L_{\text{att}} \approx 100 \text{ mm}$

See Alex Picksley's poster Wed poster 199

See Aimee Ross's poster Wed poster 189

Summary

MP-LWFA:

- Could be route to high efficiency and high rep-rate
- Proof-of-principle experiments in good agreement with theory
- First steps to energy recovery demonstrated
- ARC ionization injection
 - Could allow controlled injection of bunches with sub-10nm emittance & sub 0.1% slice energy spread
- HOFI channels could provide "indestructible" kHz-ready plasma channels with:
 - Lengths of 100s mm
 - $n_{\rm e}(0) \approx 1 \times 10^{17} \, {\rm cm}^{-3} \, \& W_{\rm M} \approx 10 40 \, \mu {\rm m}$

