EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

# Science Applications for the European Accelerator Research Infrastructure EuPRAXIA

<u>Maria Weikum</u>, P.A. Walker, R.W. Assmann, J. Clarke, M.-E. Couprie, M. Ferrario, F. Nguyen, C.D. Murphy, Z. Najmudin, G. Sarri, A. Specka, M.J.V. Streeter, R. Walczak

Special thanks to the EuPRAXIA Collaboration

EAAC 2019, Sep 15 – 20 2019 Elba, Italy





This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.







### **EuPRAXIA Consortium**



- 41 partner institutions
- >200 contributors
- 4 years of work



# **EUPRAXIA** Possible Applications of Plasma Accelerators





# **EUPRAXIA** Possible Applications of Plasma Accelerators







# The EuPRAXIA Project



### EuPRAXIA = European Plasma Accelerator with eXcellence In Applications

#### EuPRAXIA is a Horizon2020-funded conceptual design study for a 5 GeV electron plasma accelerator with high beam quality

#### Objectives:

- 1. Show plasma accelerator technology can achieve high quality beams (usable).
- 2. Show benefit in size and cost versus conventional accelerator technology.

A distributed infrastructure proposing facilities for

- Beam-driven plasma acceleration
- Laser-driven plasma acceleration





# The EuPRAXIA Project



### EuPRAXIA = European Plasma Accelerator with eXcellence In Applications

#### EuPRAXIA is a Horizon2020-funded conceptual design study for a 5 GeV electron plasma accelerator with high beam quality

#### • <u>Objectives:</u>

- 1. Show plasma accelerator technology can achieve high quality beams (usable).
- 2. Show benefit in size and cost versus conventional accelerator technology.

A distributed infrastructure proposing facilities for

- Beam-driven plasma acceleration
- Laser-driven plasma acceleration





# The EuPRAXIA Project



### EuPRAXIA = European Plasma Accelerator with eXcellence In Applications

#### EuPRAXIA is a Horizon2020-funded conceptual design study for a 5 GeV electron plasma accelerator with high beam quality

#### • <u>Objectives:</u>

- 1. Show plasma accelerator technology can achieve high quality beams (usable).
- 2. Show benefit in size and cost versus conventional accelerator technology.

A distributed infrastructure proposing facilities for

- Beam-driven plasma acceleration
- Laser-driven plasma acceleration





### The Laser-Driven Site







### The Laser-Driven Site







### The Beam-Driven Site











**E**<sup><sup>•</sup> PRA IA</sup>



# **Expected Performance**



EuPRAXIA has developed several complementary solutions.

**Example**: A multi-stage LWFA scheme with external injection from an RF injector (240 MeV) and two plasma accelerator stages [*A. Ferran Pousa et al. Phys. Rev. Lett.* 123, 054801 (2019)]

| Energy                     | [GeV]     | 5.9       |
|----------------------------|-----------|-----------|
| Charge                     | [pC]      | 22        |
| Bunch length               | [fs]      | 3.5       |
| Energy spread              | [%]       | 0.32      |
| Transv. norm.<br>emittance | [mm mrad] | 0.6 / 1.6 |
| Slice energy spread        | [%]       | 0.06      |
| Slice emittance            | [mm mrad] | 0.4 / 0.7 |



(based on start-to-end simulations of the accelerator)





- EuPRAXIA is a demonstration facility: demonstrate the high quality beams required for possible applications
- Scientific applications open the door to first pilot users after demonstration goals have been achieved
- Three user groups:
  - ➤ Co-development → accelerator, laser, ... specialists (our community)
  - > Training  $\rightarrow$  aspiring experts (grow our community)
  - $\succ$  Scientists interested in applications  $\rightarrow$  pilot users
- EuPRAXIA is not a traditional user facility, but a step towards it



# **Finding Relevant Applications**



#### **Based on community interest** Laser Acceleration Molecular Science Biophysics Plasma Interaction Laser Acceleration □ Preliminary survey + VSICS AMO Physics ACOUSTICS lasma workshops physics Organic Materials Pulsed Electron Sources Material Processin High Field Physics Laboratory Astrophysics Technology Physical Chemistry SAXSX-ray Sources Share bring Protocome Protoc Structural Biolog X-ray Sources Medical Sector Acoustics Medical Sector Material Science X-ray Crystallography Others **Accelerator Science** sics Nanomaterials High Field Physics National Laboratory Astrophysics 18% 17% **Inspection &** material studies 9% Laser Science 16% **Medical Physics** 10% **High-Energy Physics** 9% **Photon Science** 21% PAEPA Workshop, Oct 2016, Palaiseau (France)



# **Finding Relevant Applications**

Laser Acceleration Molecular Science Biophysics Laser Acceleration

\_aser Technology

Nanomaterial



### **Based on community interest**

### **Based on project strategy**





Variation in complexity and beam quality requirements  $\rightarrow$  Risk mitigation SAXS A-ray Sources Matter Provide Protocology States Structure Provide Protocology Structure Protocology Structu

- Emphasis on strengths of laser-driven / beam-driven plasma acceleration techniques
- Emphasis on clear benefits of plasma acceleration

PAEPA Workshop, Oct 2016, Palaiseau (France)



# A Choice of Flagship Applications











Science Applications for the European Accelerator Research Infrastructure EuPRAXIA - M. Weikum

EUPRAXIA



# Flagship Application 1: A Compact X-Ray Source





EuPRAXIA WP 7 Z. Najmudin et al.

\* = [mm mrad s (0.1% BW)]<sup>-1</sup>



[Albert et al. Plasma Phys. Control. Fusion. 56 (8): 084015 (2014)]

> [Cole et al. PNAS. 115 (25): 6335-6340 (2018)]



#### TODAY

- Commercial X-ray tubes with low photon count / resolution
- ✓ Low-rep rate betatron experiments

#### **EuPRAXIA**

0.6 – 110 keV

 $2x10^8 - 4x10^{10}$ 

2x10<sup>21</sup> - 1x10<sup>26</sup> [\*]

- High-rep rate betatron source operation
- Testing of in-vivo / biological samples
- Development of highly optimised setups

FUTURE Application in hospitals / medical centres

#### Science Applications for the European Accelerator Research Infrastructure EuPRAXIA - M. Weikum

Betatron source

Radiation wavelength

Photons per pulse

Brightness

# **EUPRAXIA** Flagship Application 2: A GeV-Scale Positron Source







## Flagship Application 3: A Free-Electron Laser







### Flagship Application 3: A Free-Electron Laser





# **EUPRAXIA** Flagship Application 4: Accelerator R&D Test Beams









- Variety of laser, accelerator and photon science facilities already existing
- National programs with similar goals and science directions









- Variety of laser, accelerator and photon science facilities already existing
- National programs with similar goals and science directions
  - -----> Complementary developments with EuPRAXIA



SCAPA





- Variety of laser, accelerator and photon science facilities already existing
- National programs with similar goals and science directions
  - -----> Complementary developments with EuPRAXIA
- + increase overall "user" capacity
- + increase impact and synergy from international collaboration
- + unique facility dedicated to plasma accelerator technology, demonstrating scalability and pushing miniaturisation of accelerator-based machines
- + necessary intermediate step between proof-of-principle experiments and future routine facilities









- Submission of <u>Conceptual Design Report in Oct 2019</u>
- Application to ESFRI Roadmap 2021?
- Completion of facility in 10 year timeframe, *subject to funding*





# Conclusions



- EuPRAXIA = European Plasma Research Accelerator with EXcellence In Applications
- One-of-a-kind test facility based on plasma accelerator technology with varied applications
- An intermediary step to new, advanced applications for plasma accelerators





### Many thanks to the EuPRAXIA Consortium!



Especially:

- Work Package 6 on the Free-Electron Laser Pilot Application: M.-E. Couprie, F. Nguyen, et al.
- Work Package 7 on High-Energy Physics & Other Pilot Applications: J. Clarke, C.D. Murphy, Z. Najmudin, G. Sarri, A. Specka, M.J.V. Streeter, R. Walczak, et al.



### **16 Participants**



**Backup Slides** 



For further information...







**E**<sup>•</sup>**PR**<sup>•</sup>**AXIA** 







**E**<sup>t</sup>**PR**<sup>A</sup>**XI**A



### **Facility Overview**





- ... Higher repetition rate ... Sub-femtosecond beam durations

- ➤ ... Higher photon flux
- ➤ ... Shorter FEL wavelengths



### **Preliminary Parameter Table**



| Energy                              | [GeV]     | 1.0 - 5.9            |
|-------------------------------------|-----------|----------------------|
| Charge                              | [pC]      | 23 - 40              |
| Beam duration                       | [fs]      | 7 – 13               |
| Energy spread                       | [%]       | 0.1 - 1.1            |
| Transv. Norm. emittance             | [mm mrad] | 0.4 - 1.2            |
| Ultrashort FEL radiation pulses     |           |                      |
| Radiation wavelength                | [nm]      | 0.2 - 36.3           |
| Photons per pulse                   |           | $2x10^9 - 3x10^{13}$ |
| Brightness                          | [*]       | 2x1030 - 6x1032      |
| Betatron source                     |           |                      |
| Radiation wavelength                | [nm]      | 0.6 – 110 keV        |
| Photons per pulse                   |           | 2x108 - 4x1010       |
| Brightness                          | [*]       | 2x1021 – 1x1026      |
| Low-energy positron source (0.5 – 1 | LO MeV)   |                      |
| Beam duration                       | [ps]      | 20 - 90              |
| Positrons per shot                  |           | ≥ 107                |
| High-energy positron source (≥ 1Ge  | V)        |                      |
| Beam duration                       | [fs]      | ≤ 10                 |

~107

Note that the table above is not self-consistent and to-date only preliminary. More detailed lists are available upon request.

Positrons per shot





\* Not including laser / RF infrastructure, beam delivery or undulators



### **Technical Cases Studied**







### **EuPRAXIA's Main Technical Challenges**



Note: This list is merely designed to give an overview, it is not comprehensive and does not cover any details of the proposed solutions.

| Technical Challenge            | Proposed Solution                                                                                                           |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Beam energy spread reduction   | Optimisation of injection mechanisms<br>Development of novel injection mechanisms<br>External injection from RF accelerator |
| Beam emittance reduction       | Advanced beam control via transfer lines                                                                                    |
| Laser – e-beam synchronisation | Development of novel synchronisation schemes                                                                                |
| Shot-to-shot stability         | Advanced diagnostics<br>Feedback & control system<br>Tight control over laser tolerances                                    |
| Operability & maintainability  | Advanced diagnostics<br>Feedback & control system                                                                           |
| Increase in repetition rate    | Development of heat control mechanisms in laser systems<br>Differential pumping for vacuum systems                          |
| Accelerator staging            | Advanced beam control via transfer lines<br>Use of active plasma lenses for compact, strong focusing                        |
| Plasma-based FEL operation     | Ongoing, large-scale "prototyping" activities (e.g. LUX, COXINEL)<br>Tight control of electron beam parameters and dynamics |



### **Management Structure**



