

15-21 September 2019 Hotel Hermitage, La Biodola Bay, Isola d'Elba, Italy

が発光学 Tsinghua University

A Compact Gamma Ray Source Based on ICS

Chuanxiang Tang (唐传祥) tang.xuh@tsinghua.edu.cn

Outline

- Brief Introduction to ICS gamma-ray sources
- Overview of the ICS gamma-ray sources in THU
- Very compact ICS GAmma-ray Source (VIGAS)
 Motivation
 - Physics design
 - S-band photo-injector
 - ►X-band linac
- Summary

Inverse Compton Scattering X-ray Source

Frequency of the Scattering Photon

$$\omega_x = \frac{2\gamma^2 (1 - \cos\psi)}{1 + a_0^2/2} \omega_0$$

 Differential cross-section

$$\frac{d\sigma}{d\Omega}\Big|_{KN} = \frac{r_e^2}{2} \left(\frac{\nu'}{\nu}\right)^2 \left\{\frac{\nu'}{\nu} + \frac{\nu}{\nu'} - \sin^2\theta\right\} = \frac{r_e^2}{2} (1 + \cos^2\theta) F_{KN}$$

if the photon energy is much smaller than the rest energy of electron,

$$\varepsilon = \frac{hv}{m_0 c^2} \ll 1 \quad \Longrightarrow \quad F_{KN} \sim 1 \quad \Longrightarrow \quad (\frac{d\sigma}{d\Omega})_{KN} = \frac{r_e^2}{2} (1 + \cos^2 \theta)$$

Total Cross-section

$$\sigma_{\rm Th} \equiv \frac{8\pi}{3} r_e^2 = 6.65 \times 10^{-29} \,\mathrm{m}^2 = 0.665 \,\mathrm{barn}$$

TS/ICS Sources Compared with Other Light Sources

Isingnua University

Probe for Nuclear Studies

AN AN

ICS Studies at Tsinghua

Milestones on the Road from TTX to XGLS

2013-2018: XGLS-3MeV, 10⁸/pulse

2001:

Beginning

of the TS

studies in

THU

2002:

CAEP

on TS with

2006: The 1st scattering x-ray (4.6keV, 1.7x10⁴) was got with a Collaboration **BWT** linac of THU and YAG laser from CAEP

2009: Soft Xray generation experiment using photocathode rf gun at the TTX, 290.4 eV, 1 ps, and 6.4 x10³.

Generation of first hard X-ray pulse at TTX, 51.7 keV, 1.0 × 106

Tsinghua University

2011:

- 1. Chinese Physics C, Vol. 32, No. 1, Jan., 2008
- NIM A 608 (2009) S70–S74 2.
- 3. NIM A 637 (2011) S168-S171
- REVIEW OF SCIENTIFIC INSTRUMENTS 84, 053301 (2013) 4.

Tsinghua Thomson scattering X-ray source (TTX): TTX-I is operating, TTX-II is under technical design.

Tsinghua University

The 50MeV Electron linac beam line of TTX

The maximum gradient of the gun is ~110MV/m and the bunch charge from a few pC to ~1nC.

Solution → Solutio

✓ The acceleration phase is set at ~-90° to introduce an energy chirp

 \mathbf{M} Simulations show the emittance can be preserved when compression factor C < 3

A 4-dipole chicane has been installed after the linac

 \checkmark The bend angle can be varied up to ~15°.

The combination of ballistic bunching and magnetic compression enable us to generate ultrashort (rms<20fs) and high-intensity (~10kA) electron beam.</p>

Photon flux of TTX-I

Advanced Imaging with TTX-I Small spot size: Phase Contrast Imaging (including PC) CT Tunable Energy: Multi-Energy X-ray Imaging (Material Identification, K-edge Imaging...) Narrow Spectra: Mono-Energetic X-ray CT Short Pulse Length: Fast Process Imaging

TTX-II with LESR and Optical Cavity

A Very Compact ICS Gamma Ray Source- VIGAS

γ-ray energy: 0.2-4.8MeV Bandwidth with collimator : <1.5% Total photon flux(ph/s): >4×10⁸@0.2-2.4MeV; >1×10⁸@2.4-4.8MeV Photon flux with 1.5% Bandwidth(ph/s): >4×10⁶@0.2-2.4MeV; >1×10⁶@2.4-4.8MeV controllable polarization from linear to circular

C.Tar

Simulated Performance of the Compact ICS Gamma Ray Source

The Main Structure of VIGAS can be installed in a standard container

Photocathode RF Gun Development at THU

2011

Parameters	Value	Unit
PI mode frequency	2856	MHz
Quality factor Q ₀	14000	
Coupling factor β	1.3	
Electric field on cathode	120	MV/m
RF pulse width	1.7	μs
Repetition rate	10	Hz
Peak power of wall heat loss	9.4	MW
Input RF peak power	11.3	MW
Cathode material	Copper	
QE	4 × 10 ⁻⁵	
dark current at 120 MV/m	< 250	pC/pulse

The gun designed to eliminate the multiple modes

	Dipole	Quadruple
BNL	2E-03	2E-02
LCLS	9E-06	5E-05
THU	7E-05	1E-05

*CST simulation, H_{ϕ} analysis @ r=10mm

The unloaded quality factors and 0-pi mode separations of the three generations of the photocathode rf gun developed by THU

1st generation:

2nd Generation: gold copper brazing Optimized vacuum pump hole

3rd Generation:
gold copper brazing.
optimized vacuum pump hole.
added another two holes to eliminate quadruple.
thin and ellipse iris.
no Helico flex.
dry ice cleaned cathode
round corner.

L. M. Zheng *et al.*, Nucl. Instrum. Methods Phys. Res Sect. A 834, 98-107 (2016) H. Qian *et al.*, in the proceedings of FEL 2012 CHTQ120 *et ELA* A Charge forceedings of IPAC2011

A Section of the X-band Linac

RF Pulse Compressor

前華大学 Tsinghua University

X-band High Gradient Structure

Parameters	Value	
Freq. (GHz)	11.424	
Phase Shift (degree)	120	
Cells	72	
Length (mm)	630	
Filling Time (ns)	88	
a (mm)	4, 3	
v _g /(0.01c)	3.76, 1.38	
R/Q (kOhm/m)	14.2, 16.3	
Q	6900, 7100	
Input Power(MW)	50	
Gradient (MV/m)	80	
S ₂₁ (dB)	-4.3	

T24 design, assembled/tuned/baked/bonded at Tsinghua University in 2014, test at KEK in 2014-2015 (110 MV/m reached).

Input power	51.8 MW	
Gradient	110.2 MV/m	
BDR	1.26×10 ⁻⁶ bpp	
Pulse width	252 ns	
Total RF pulse	6.5×10 ⁸	
Total BD number	6000	
Total RF-on time	3600 hours	

Parameters of high power tests of T24_THU#1 at KEK

Designed and manufactured a 12-cell open cell

EAAC2019

C.Tang,

Parameters for 100 MV/m gradient				
	C12-	T24-		
Input power [MW]	65.3	45.3		
Output power [MW]	52.56	26.3		
Filling time [ns]	14.7	48.2		
Max surface E-field	255	264		
Pulse temperature	30	23		
Max surface Sc	6.2	5.1		

High Power Test at TPoT-X: Reached 87 MV/m with BDR= 7×10⁻⁵ / pulse and pulse width = 100 ns; now is still conditioning.

A compact SLED-I RF pulse compressor using a cylindrical corrugate cavity was designed and tested at TPoT-X : Peak power gain = 5 for 1.5 us -> 100 ns

Summary

- Inverse Compton Scattering (ICS) between an electron bunch of hundreds of MeV and a laser pulse is one of the best ways to generate high brightness gamma-ray.
- Several projects of ICS source. **TTX-I**, **TTX-II** are operating or under construction.
- VIGAS (Very compact Ics GAmma-ray Source) whose main linac is based on high gradient x-band structures has been designed, and the key technologies of it is under R&D.

