MariX: a Multi-disciplinary Advanced **Research Infrastructure for the generation** and application of X-rays

lari

INFN - Milan

Andrea R. Rossi on behalf of the MariX collaboration

Advanced Accelerator Workshop 2019, La Biodola (Italy), September 15th - 21st 2019

The opportunity CORRIERE DELLA SERA **/lilano**

Dir. Resp.: Luciano Fontana

Andrea R. Rossi

Nari

16-NOV-2017 pagina 5 foglio 2/2www.datastampa.it

The Innovation Park Project

A rendering of the possible look for **Expo** area after transformation

Andrea R. Rossi

Mari

Il parco della scienza del sapere e dell'innovazione

The Goal

Synchrotron Radiation sources

500 MHz repetition nJ pulse energy; ≈50ps 10⁵⁻⁶ photons x (5)x10⁸pulses

Linear response regime: Imaging and spectroscopy (perturbation theory) MARIX+FEL (10 keV) 1 MHz repetition 100nJ pulse energy; ≈50fs 109-12 photons x 106pulses

Ultrafast Linear response

Andrea R. Rossi

Mar

Free Electron Laser sources

10Hz-27kHz repetition mJ pulse energy; ≈50fs 10¹²⁻¹³ photons x 10¹⁻³⁻⁽⁶⁾pulses

Ultrafast Non-linear response regime Imaging, flash+destroy

Courtesy Giorgio Rossi – Chair ESFRI

Research areas: photon number, energy and time

Research areas (yellow) and techniques (blue) mapped onto (photon energy-photon number)

Fine analysis of matter at/under the nanometer scale relies on X-rays produced by

Synchrotrons or FELs

Synchrotron Radiation sources

Andrea R. Rossi

Mar

MARIX+FEL (10 keV)

Linear spectroscopy There is the need of a source: Low cost, contained dimension Reaching 8 keV Low flux/shot: 107-109 ph per shot Large rep rate: up to 1 MHz Possibly large coherence degree.

Free Electron Laser sources

Real estates do matter!

Next generation CW FELs like LCLS-II are km-long: not enough space in new UniMi Campus

Andrea R. Rossi

Mari

Length budget for MariX

3.8 GeV electron energy to FEL-radiate at 8 keV (1.5 Angstrom) with 1.2 cm undulator period

Super-conducting RF Cavities at TESLA frequency (1.3 GHz) can safely operate up to 17 MV/m accelerating gradient in CW (continuous wave) mode (to be compared with 25 MV/m of XFEL in pulsed mode)

This means 3.8 / 0.017 = 224 m active RF Cavity length. Typical filling factor of SC Linacs is 0.5, implying toal effective legnth of about 450 m just for the main SC Linac. Let's add room for:

- injectors (30 m)
- transfer lines (20 m)
- magnetic compressors (50 m)
- matching line (20 m)
- undulator (80 m)
- photon beam lines (100 m)...

Andrea R. Rossi

Mar

... it rounds up to about 800 m. As a matter of fact LCLS-II is a km long.

How can we fit the whole FEL source into a **500 m long Campus available footprint ??**

The Solution!

We had to conceive a new kind of machine: the Two-Way Linac (TWL) All Accelerators are one way - the beam propagates in one direction (ERL too) MariX uses the CW Linac twice - forward and backward

2.8-3.2 GeV 3.4-3.8 GeV

Andrea R. Rossi

Mar

See Marcello Rossetti Conti poster this afternoon

1.4-1.6 GeV

Only Standing Wave RF Cavities can accelerate particles in both directions! EAAC 2019, La Biodola (Italy), Septemer 18th 2019

stituto Nazionale di Fisica Nucleare

FN

Multi-disciplinary Advanced Research Infrastructure for the generation and application of X-rays

ar

UNIVERSITÀ DEGLI STUDI DI MILAÑO

Conceptual Design Report

Andrea R. Rossi

After 1 year of hard work...

...CDR has been published and available for download at

www.marix.eu

together with all other documents published so far.

MariX, an advanced MHz-class repetition rate X-ray source for linear regime time-resolved spectroscopy and photon scattering

L. Serafini¹, A. Bacci¹, A. Bellandi², M. Bertucci¹, M. Bolognesi³, A. Bosotti¹, F. Broggi¹, R. Calandrino⁴, F. Camera^{3,1}, F. Canella³, S. Capra^{3,1}, P. Cardarelli^{5,6}, M. Carrara⁷, K. Cassou⁸, A. Castoldi^{9,1}, R. Castriconi⁴, G.M. Cattaneo⁴, S. Cialdi^{3,1}, A. Cianchi¹⁰, N. Coluccelli^{9,11}, C. Curatolo¹², A. Del Vecchio⁴, S. Di Mitri¹³, I. Drebot¹, K. Dupraz⁸, A. Esposito¹⁴, L. Faillace¹, M. Ferrario¹⁴, C. Fiorini^{9,1}, G. Galzerano^{11,9}, M. Gambaccini^{5,6}, G. Ghiringhelli⁹, D. Giannotti¹, D. Giove¹, F. Groppi^{3,1}, C. Guazzoni^{9,1}, P. Laporta^{9,11}, S. Leoni^{3,1}, A. Loria⁴, P. Mangili⁴, A. Martens⁸, T. Mazza¹⁵, Z. Mazzotta¹⁶, C. Meroni¹, G Mettivier¹⁷, P. Michelato¹, L. Monaco¹, S. Morante¹⁰, M. Moretti Sala⁹, D. Nutarelli⁸, S. Olivares^{3,1}, G. Onida³, M. Opromolla^{3,1}, C. Pagani^{3,1}, R. Paparella¹, M.G.A. Paris^{3,1}, B. Paroli^{3,1}, G. Paternò⁶, C. Paulin³, L. Perini^{3,1}, M. Petrarca¹⁸, V. Petrillo^{3,1,*}, E. Pinotti⁹, P. Piseri^{3,1}, M. A.C. Potenza³, F. Prelz¹, A. Pullia^{3,1}, E. Puppin^{9,1}, F. Ragusa^{3,1}, R. Ramponi^{9,11,1}, M. Romè^{3,1}, M. Rossetti Conti¹, A.R. Rossi¹, L. Rossi¹⁹, M. Ruijter^{18,1}, P. Russo¹⁷, S. Samsam^{20,1}, A. Sarno¹⁷, D. Sertore¹, M. Sorbi^{3,1}, B. Spataro¹⁴, M. Statera¹, F. Stellato¹⁰, E. Suerra^{3,1}, A. Tagliaferri⁹, A. Taibi^{5,6}, V. Torri¹, G. Turchetti²¹, C. Vaccarezza¹⁴, R. Valdagni²², A. Vanzulli^{3,23}, F. Zomer⁸, G. Rossi³

- ¹ INFN Sezione di Milano, Via Celoria 16, 20133, Milano and LASA, Via F. Cervi 201, 20090 Segrate (MI), Italy
- ² DESY, Notkestrasse 85, 22603 Hamburg, Germany
- ³ Università degli Studi di Milano, Via Festa del Perdono 7, 20100 Milano, Italy
- ⁴ Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Via Olgettina 60, 20132 Milano, Italy
- ⁵ Università di Ferrara, Via Saragat, 1 44122 Ferrara, Italy
- ⁶ INFN Sezione di Ferrara, Via Saragat, 1 44122 Ferrara, Italy
- ⁷ Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1 20133 Milano, Italy
- ⁸ LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91898 Orsay, France
- ⁹ Politecnico di Milano, Piazza Leonardo da Vinci, 32 20133 Milano, Italy
- ¹⁰ Università degli Studi di Roma Tor Vergata and INFN, Via della Ricerca Scientifica, 1 00133 Roma, Italy
- ¹¹ Istituto di Fotonica e Nanotecnologie, CNR, Piazza Leonardo da Vinci, 32 20133 Milano, Italy
- ¹² INFN Sezione di Padova, Via Marzolo, 8 35131 Padova, Italy
- 13 Elettra Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
- 14 INFN Laboratori Nazionali di Frascati, Via Enrico Fermi, 40 00044 Frascati (RM), Italy
- ¹⁵ European X-ray Free Electron Laser Facility GmbH, Holzkoppel, 4 22869 Schenefeld, Germany
- ¹⁶ ARCNL, Advanced Research Center for Nano-Lithography, EUV Group, 106 Science Park, 1098xg Amsterdam, The Netherlands
- 17 Università degli Studi di Napoli 'Federico II', Dipartimento di Fisica 'E. Pancini' and INFN Sez. Napoli, Via Cintia, 80126, Napoli, Italy
- ¹⁸ Università degli Studi di Roma 'La Sapienza' and INFN, Piazzale Aldo Moro, 5 00185 Roma, Italy
- ¹⁹ CERN Accelerator & Technology Sector, Esplanade des Particules, 1 1217 Meyrin, Switzerland. On leave from Università Degli Studi di Milano.
 ²⁰ Faculty of Sciences, Mohammed V University, Rabat, Morocco
- ²¹ Alma Mater Studiorum Università di Bologna, Dipartimento di Fisica e Astronomia, via Irnerio, 46 40126 Bologna, Italy
- ²² Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1 20133, Milano, Italy and Università degli Studi diMilano, Dipartimento di Oncologia ed Emato-oncologia, Via S. Sofia, 9/1 - 20122 Milano, Italy
- ²³ ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore, 3 20162 Milano, Italy

Executive summary has been published on NIM A

EAAC 2019, La Biodola (Italy), Septemer 18th 2019

and the second s

the second se

Final conceptual layout... 100

2

Mar

...and 3D rendering

Experimental hall

Linac

MariX access

Andrea R. Rossi

Mari

Considerations about FEL

Beam parameters requirements

Energy (GeV)	1.8 - 3.8
Bunch charge (pC)	8 - 50
Bunch length (fs)	< 20
$\varepsilon_{x,y}$ (slice) (mmmrad)	0.5
Bunch Energy spread (slice) (%)	0.045 - 0.024
Bunch peak current (kA)	1.6
Bunch separation (µs)	> 1
Energy jitter shot-to-shot (%)	0.1
Time arrival jitter (fs)	< 50
Pointing jitter (µm)	5

Andrea R. Rossi

Jan

Beam parameters requirements

- 1) To achieve continuous tunability from 100 eV to 8 KeV we need two undulators
- 2) All components must operate up to 1 MHz repetition rate
- 3) Max 50 pC bunch charge beam dump constraints at 3.8 GeV (50 microampere, about 200 kW average beam power)
- 4) Beam optics in two-way section at arc-entrance-exit must operate in both directions second order optics adopted (RF-solenoid, no quads!)
- 5) Lengths have been chosen to avoid collisions between bunches (1 MHz 1 microsec 300 m bunch separation)

DB results: 30 pC bunch

Andrea R. Rossi

Mar

Further considerations on FEL

Andrea R. Rossi

Mar

For emitting with continuity from 100 eV to 8 KeV:

SASE 1: water window 2.77 nm 10^{10} 10 **(B)** 10^{8} **Q=50pC** 10^{7} <P(W)>(B') 1: 2.8 cm 10^{6} **Q=8pC** 10° 1.5 10^{4} 10^{3} 10^{2} Spectrum 25 20 15 100 30 m z(m)(b) A(arb. units) Q=50 pC SASE 3.00 3.01 2.99 3.02 20 2.98 15 λ(nm) (d) A(arb. units) **Q=16 pC** Single Spike 3.00 3.01 2.98 2.99 3.02 λ(nm)

			0
	16pC	50 pC	
e-En (GeV)	3.2	3.2	£1 - F
Und l_w, L(cm,m)	3,25	5, 25	UliX
Ph-en (keV)	0.45 (2.8nm)	0.45 (2.8nm)	
Rep rate	1 MHz	1 MHz	
Energy	21 µJ	156 µJ	- true INo
Numb per shot	3 1011	2.2 1012	Powe
Bandwidth (%)	0.1	0.15	30 m
Pulse duration (fs)	3	10	$\underbrace{\left[\begin{array}{c} 6x10^{\circ} \\ 2 \end{array} \right]}^{(a)}$
N/ s (s-1)	3 1017	2.2 1018	D 4x10 ⁹
S dens(N/shot/%bw)	1.7 10 ¹²	1.5 1013	2x10 ⁹
Radiation size mm	0.15	0.07	$ \begin{array}{cccc} 0 & 5 & 10 \\ & & s(\mu m) \\ \end{array} $
Divergence mrad	2.5 10 ⁻²	1.810-2	$\begin{bmatrix} 1x10^{\circ} \\ 3 \end{bmatrix}$ (c)
Tot. S. d. (N/s/%bw)	1.7 10 ¹⁸	1.5 1019	Dower 5x10 ⁸
Coherence	Single Spike	SASE	
			s(µm

Andrea R. Rossi

lar

SASE 2: linear spectroscopy 4.17 Å

			0
	50 pC	8 pC	
e-En (GeV)	3	3	51 - 5
Und λw , L(cm,m)	1.2 60	1.2 60	UliX
Ph-en (keV)	3	3	79 =
Rep rate (MHz)	1	1	aw
Energy (µJ)	42	2.5	Power
Numb per shot	8.75 1010	5.4 109	60 m
Bandwidth (%)	0.45	0.8	8×10^9 (a)
Pulse duration (fs)	6.6	1.2	$ \underbrace{\left(\begin{array}{c} 6x10^9 \\ 4x10^9 \end{array} \right)}_{4x10^9} $
N/ s (s-1)	8.75 1016	5.4 1015	2×10^{2}
S dens(N/shot/%bw)	1.94 1010	6.7 108	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Tot. spect dens.	1.94 1016	6.7 1014	(c)
Radiation size mm	0.135	0.14	
Divergence mrad	4 10-2	4.3 10-2	^O 5x10 ⁸ - d
Coherence	SASE	Single Spike	
			s(µm)

Andrea R. Rossi

a

SASE 3: single shot imaging 1.5 Å

e-En (GeV)	3.8
Und (cm,m)	1.2 60
Ph-en (keV)	9.25
Rep rate	1 MHz
Energy	3.3 uJ
Numb per shot	2.5 109
Bandwidth (%)	0.3
N/ s (s-1)	2.5 10 ¹⁵
Spectral dens(N/shot/1%bw)	0.8 109
Radiation size mm	0.1
Divergence mrad	15 10- 3
Tot. spect dens. (N/s/1%bw)	8 10^14
Coherence	SASE
	r Chil

Andrea R. Rossi

121

seeded/cascade operation

Andrea R. Rossi

But there's more about MariX...

Andrea R. Rossi

Mar

11 XFEL modules 1.5 GeV

Bright and compact X-ray Source

EAAC 2019, La Biodola (Italy), Septemer 18th 2019

10 m

About BriXS

Andrea R. Rossi

Mar

See Luigi Faillace poster this afternoon

A back scattering Thomson source, working at 100 MHz repetition rate with energy recovery, delivering 20-180 keV mono-chromatic X-rays up to 5 x 10¹² photons/sec in 5% bandwidth for clinical applications

Photon energy (keV)	20 - 180
Bandwidth (%)	1 - 10
# photons per shot within FWHM bdw.	$0.05 \times 10^{5} - 1.0 \times$
# photons/sec within FWHM bdw.	$0.05 imes 10^{13} - 1.0 imes$
Source size (µm)	≤ 20
Source divergence (mrad)	6 - 1
Photon beam spot size (FWHM) at $z = 100 \text{ m} (\text{cm})$	40 - 4
Peak Brilliance [†]	$10^{18} - 10^{19}$
Radiation pulse length (ps)	0.7 - 1.5
Linear/Circular Polarization (%)	> 99
Repetition rate (MHz)	100
Pulse-to-pulse separation (ns)	10

BriXS demonstrator: BriXSinO

101125

Andrea R. Rossi

BriXinO

🔪 MariX Initiative – Proposal for a 🗙

i www.marix.eu

MariX Initiative

Andrea R. Rossi

🚥 🖂 🛉 🔍 Search

|||\ ⊡ ≡

Documents

Contacts

Thanks for your attention

WWW.marix.eu

Andrea R. Rossi

Mar

Backup slides

Superconductive main linac L1

Ten Tesla like cryomodules: max grad 16 MV/m, 8 cavity per cryomodules
Chirp for AC-compression is given injecting @ + 6° from RF crest.

Andrea R. Rossi

Ia

We rely only on second order focusing, symmetric back-and-forth: Rf focusing and solenoid foc.

Andrea R. Rossi

Arc Compressor matching line

Andrea R. Rossi

$$\beta \gamma K \sigma_x^2 (\sin KL + KL \cos KL) \frac{\sigma_p}{p}$$

Second passage in main linac

Andrea R. Rossi

Last energy adjustment: L2

Andrea R. Rossi

ar

MariX cost estimate

Table 31.1: MariX Cost Table.

COMPONENT	COST (M€)
RF Power Sources (1.3 GHz) + RF Plumbing	24
Cryomodules (1.3 GHz)	79
Magnets + Power Supplies	34
Building + Infrastructure	88
Cryogenics	55
Photoinjector Guns + Power Supplies	4
3rd Harmonic cryomodules (3.9 GHz)	21
3 rd Harmonic RF power source (3.9 GHz)	5.5
ICS Laser	3
ICS Fabry Perot Cavity	1.5
ICS Experimental Hall	5
Undulators	70
Accelerator Diagnostics	55
Beam Dumps	3
Accelerator Control System	55
Accelerator Radiation Safety	11
Accelerator Vacuum	32
FEL Photon Beam Shaping and Diagnostics	40
FEL End Stations	40
FEL Experimental Hall (Building and Infrastructure)	80
Contingency	69.8
TOTAL	767.8

Andrea R. Rossi

/ar

MariX 2-Phases (M€)

 BriXS
 82.5

 MariX-FEL
 685.3

 cmp. LCLS-II > 1 G€

 XFEL > 1 G€

Operational Costs (M€/year) Footprint (m²)

 MariX
 45.5

 LCLS
 110

 XFEL
 120

 SIRIUS
 35

68.000

35.000

