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Longitudinal diagnostics for PWFAS/FELs
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Virtual diagnostics
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(And even then, need to account for drifts)
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Hogan et al “PWFA experiments at FACET”, NJP (2010)

FACET schematic and parameters
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55mm NDR ® Bunch length
32nC 9 GeV ® Energy spread
11 50 um 20-23 GeV
NRTL) M e+ target 20 um
>_ = w‘
Linac2-10  LBCC Linac 11-19 P
W chicane
Table 1: The nominal FACET beam parameters at the
focal point (IP) for single bunch operation and
* Main goal: corresponding plasma parameters.
demonstrate large energy gain for e-/e+ beams in single stage PWFA Parameter Nominal Value
« Beam generated by thermionic gun extracted from damping ring Energy il
« 2 km long accelerator with various systematic phase drifts, thermal drifts e lf% _
and time-varying uncertainties. iy cloctrons or postirons
] ] . . . Charge per Bunch 3.2nC
» Longitudinal diagnostics: TCAV, SYAG, EOS, DR bunch length monitors. Bunch Length B0

 Challenge for diagnostics and control - stabilize LPS and compression  rransverse size (x, y) S
against drifts. Peak Current 20kAmps
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Adaptive method for electron bunch profile prediction
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Adaptive method for electron bunch profile prediction
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Adaptive control methods at FACET
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Adaptive method for electron bunch profile prediction
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Adaptive method for electron bunch profile prediction
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Adaptive method for electron bunch profile prediction
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Adaptive method for electron bunch profile prediction
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Joshi et al, “PWFA experiments at FACET-II”, Plas. Phys. Contr. Fus. 60 (2018)

FACET-Il schematic and parameters

FACET-II electron accelerator schematic

BC20
TCAV

Final Focus &

240 A e i e ExpenmentalArea
L1 volt. 335 MeV L2 volt. L3 volt. H 10 GeV :
: L1 phase 400 A Liphase 3.5kA L3phasei \ycpicane | 10-200 kAg

ol AR
D= aRe

Table 1. Comparison of bunch parameters for the two input bunches
(drive and trailing) and the output bunch (accelerated trailing bunch)
at the interaction point and exit of the plasma, respectively, for the
earlier FACET 1 facility and for the expected (nominally) FACET II

IP

« Main goal: demonstrate energy depletion of drive bunch
and preservation of emittance.

* RF photo injector replaced thermionic gun + damping rings
» Challenges for diagnostics and control -

» measure LPS and stabilize compression w.r.t. shot-to-
shot jitter of linac parameters.

operation.

FACET 1
Facet I (deliv- (expected/
ered) [27] simulated)
Drive bunch
Drive and trailing 21 GeV 10 GeV
energy
Charge /o /Ipeax/0r 600 pC/30 um/ 1.6nC/13 ym/
6kA/30 yum 15kA/4 pm
SE/E 0.8% r.m.s 0.15% rms
Normalized emittance 200 x 50 pm (with <7 x 3 um
Be foil) (without
Be foil)
Trailing bunch
Trailing Energy 21 GeV 10 GeV
Charge/o./lyeax/0r 350 pC/50 pum/ 0.5nC/6.4 pm/
2.1kA/30 um 7.5kA/4 pm,
SE/E 1.5% rms <1% rms
Accelerated bunch
Final energy spread <5% 1%
Energy gain 9 GeV (max) >10 GeV
Efficiency 30% (max) 50%
Emittance preservation  No Yes




LPS virtual diagnostic for FACET-II

FACET-II electron accelerator schematic

RF 200
Gun s 2 150
2 2. 100
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.......................... * = - = -50
H el >
: 20 o
i 135 Mev? Final Focus & E ’ E .
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I eV L 335 MeV L2 volt. : 10 GeV |
i phase 400 A L1 phase 3.5kA L3 phase? . 30 -10 10 30 50 30 -10 10 30 50
OSSO e et Toh oo s S | o &1 1 [+ 11 : 10-200 kA : z [ m] A z[um]
Non-destructive measurements of e-beam and linac parameters > | ML based virtual diagnostic

¢ Virtual diagnOStiC Is trained with 55 simulations SCanning Simulation parameter scanned Range

linac/beam parameters within expected jitter ranges SRt BE T
Bunch charge [%] +1
Input to ML model Accuracy
. . L1 & L2 phase [deg] +0.1
* |nputs fed to ML model include random error to simulate L1 & L2 voliage (%] +0.05
I, at BC (11,14,20) [kA] +(0.25,1,5)
measurement accuracy. ¢, at BC (11,14) [um] *1

Beam centroid BC (11,14) [m]
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FACET-Il Sin g le bunch simulations Macine eaaing bsed ongiiial phise space prdiction

of particle accelerators

C. Emma,"" A. Edelen,” M. J. Hogan, B. O’Shea, G. White, and V. Yakimenko
SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

® (Received 11 September 2018; published 16 November 2018)

150 — : y : 200
— Simulation ‘g
ML model = 150 ; )
125 “ o 08 Simulation parameter scanned Range
5 g L1 & L2 phase [deg] +£0.25
100 5 % % 07 L1 & L2 voltage [%] +0.1
— 0 E 0.6 - Bunch charge [%] +1
< 0 50 100 150 o
o 75 I [kA] 5 Input to ML model Accuracy
— 300 e e 03 L1 & L2 phase [deg] +0.1
50 ﬁ 2 € 0 J1zs totaishots L1 & L2 voltage [%] +0.05
Z200 2 when # baining Sﬁotg < 600 L at BC (11,14,20) [KA] +(0.25,1,5)
25 , i 03 e, at BC (11,14) [um] +1
. E100 Beam centroid BC (11,14) [m]
0 7\ Z . T h H b H % @ k&
20 0 20 40 0 5 10 Fraction of shots in training set
z [ m] FWHM [p m]

e ML predictions given 10 scalar diagnostic readings as inputs show very good
agreement with the current profile output at the IP.

¢ At least ~ 600 shots necessary to achieve good accuracy for these jitter ranges.

® Some shots (Imax> 60 kA) are beyond the resolution of the TCAV. A robust way of
flagging these shots is important for us to trust the output of the virtual diagnostic.
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FACET-Il Single bunch simulations

Machine learning-based longitudinal phase space prediction
of particle accelerators

C. Emma,"" A. Edelen,” M. J. Hogan, B. O’Shea, G. White, and V. Yakimenko
SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

M  (Received 11 September 2018; published 16 Noveml ber 2018)
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® Results for the LPS prediction show similar
agreement between NN and simulation.

score=R?2=1—

e Sensitivity study (removing diagnostics from ML
input) shows that the most critical diagnostic is
the peak current measurement after BC20.

ij ij

true predicted
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LCLS experimental proof of concept

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 112802 (2018)

LLCLS accelerator schematic

Machine learning-based longitudinal phase space prediction
of particle accelerators

C. Emma,"" A. Edelen,” M. J. Hogan, B. O’Shea, G. White, and V. Yakimenko
SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

® (Received 11 September 2018; published 16 November 2018)
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LCLS Experiment:

Machine parameters scanned:
L1s phase from -21 to -27.8 deg

BC2 peak current from 1 to 7 kA

Inputs to ML model:
L1s voltage & phase readbacks,
L1x voltage, BC1 and BC2 current

* ML prediction of LPS/current profile from five
scalar inputs agrees well with measurements.




LCLS experimental proof of concept

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 112802 (2018)

Machine learning-based longitudinal phase space prediction
of particle accelerators

LLCLS accelerator schematic

C. Emma,"" A. Edelen,” M. J. Hogan, B. O’Shea, G. White, and V. Yakimenko
SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

® (Received 11 September 2018; published 16 November 2018)
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LCLS Experiment:

Machine parameters scanned:
L1s phase from -21 to -27.8 deg

Measured
Predicted

0 10 20 30 40 50 60
FWHM [p m] 05t

Shots with
‘bad’ prediction
circled

from XTCAV [kA]
Cuvrrem [kA]

max
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5
4
3
2
1
0
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BC21 _ monitor [kA] -40 20 0 20 @
max

BC2 peak current from 1 to 7 kA

Inputs to ML model:
L1s voltage & phase readbacks,
L1x voltage, BC1 and BC2 current

* ML prediction of LPS/current profile from five

scalar inputs agrees well with measurements.

+ Bad predictions can result from large

discrepancy between diagnostic input (e.g.
BC2 current) and XTCAV current (see bad
shots).

+ Flagging bad shots (e.g. with redundant

diagnostic) is important for trusting virtual
diagnostic prediction.



FACET-Il Two-bunch simulations with TCAV
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FACET-Il Two-bunch simulations with TCAV
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FACET-Il Two-bunch simulations with TCAV
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FACET-Il Two-bunch simulations with TCAV
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FACET-Il Two-bunch simulations with TCAV
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Using the ML prediction with additional input (e.g.
correlations with other diagnostics) will add
confidence in agreement between measured

LPS and LPS at the IP




FACET-Il Two-bunch simulations with TCAV
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LPS optimization using virtual diagnostic
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Optimization using ML inverse model
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NN provides “smart” initial guess for optimizer - avoids getting
stuck in local minima to converge to correct solution
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Flow diagram for the NN + feedback

® Goal is decrease tuning time and improve beam quality
for target beam parameters




Optimization using ML inverse model

NN provides “smart” initial guess for optimizer - avoids getting Flow diagram for the NN + feedback

stuck in local minima to converge to correct solution

® Goal is decrease tuning time and improve beam quality -

for target beam parameters v ; Q‘;

* NN and an optimizer used to automatically change

machine parameters to obtain a desired LPS

e By making an initial guess using the NN, the optimizer
feedback is able to achieve the desired LPS
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Conclusion and future work
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We are developing an ML-based virtual diagnostic for single shot prediction of the 2D LPS at
FACET-IIL.

Successful implementation will provide additional information for user experiments and a signal to
include in feedback algorithms for LPS control and tuning.

Our work shows the feasibility of the virtual diagnostic to accurately predicting the LPS given few
non-destructive diagnostic inputs and LPS in simulation (FACET-Il) and experiment (LCLS).

Resolution limits of XTCAV will result in discrepancies between predicted current profiles and
actual current at IP.

Accurate quantification of the prediction uncertainty is under study and will be incorporated in the

ML diagnostic as it is integrated in the control system for regular operations.
28
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