
Machine learning-based virtual diagnostic  
for longitudinal phase space prediction

European AAC 
September, 2019 

Elba

C. Emma 

A. Edelen, M. Alverson, G. White, A. Hanuka, M. J. Hogan, D. Storey,  
V. Yakimenko, B. O’Shea A. Scheinker, S. Gessner, A. Lutman, D. Bohler, L. Alsberg



Outline

1. ML-based virtual diagnostics - background and motivation 

2. Virtual diagnostic for LPS prediction 
1. Previous studies at FACET - online simulation 
2. ML study for FACET-II and proof-of-concept at LCLS 
3. ML Two-bunch studies for FACET-II  

3. Optimization using LPS virtual diagnostics 

4. Conclusions, challenges and next steps towards implementation



Longitudinal diagnostics for PWFAs/FELs

Quantities measured

Energy  
spectrum

Longitudinal Phase Space

ΔE /E ∼ % level

Δz ∼ 10 − 200μm
σz ∼ 0.1 − 10μm

M.C. Downer et al., RMP 90 (2018) 

Bunch Profile

Maxwell, PRL 111 184801 (2013)

Scheinker, Gessner, PRSTAB 18 102801 (2015)

C. Behrens Nature Comms 5 (2014)

~2-4 fs resolution 
At LCLS for 4-8 GeV

~0.7 fs resolution 
at LCLS using OTR

PWFA

FEL

K. Bane SLAC PUB  
3662 (1985)

Tzoufras et al.,  
PRL 101, 145002 (2008)

Ratner et al., PRSTAB 
18, 030704 (2015)



Virtual diagnostics

Virtual 
diagnostic

Measured 
machine inputs 
(non-destructive)

“Real-time” prediction of beam 
characteristics or explicit diagnostic 
output

Fast physics-based simulation

Predict what the output of a diagnostic would look like when it is unavailable

ML model

 A.L. Edelen et al IPAC 2018
A. Edelen, J.P. Edelen, D. Erdstrom et al., Proc NAPAC 2016
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Joint benefits:  

Additional information for user experiments 

Additional signal to feedback on for LPS tuning



FACET schematic and parameters
Hogan et al “PWFA experiments at FACET”, NJP (2010)

• Main goal:  
demonstrate large energy gain for e-/e+ beams in single stage PWFA 

• Beam generated by thermionic gun extracted from damping ring 
• 2 km long accelerator with various systematic phase drifts, thermal drifts 

and time-varying uncertainties.  
• Longitudinal diagnostics: TCAV, SYAG, EOS, DR bunch length monitors. 
• Challenge for diagnostics and control - stabilize LPS and compression 

against drifts. 

1.19 GeV 
5.5 mm 
3.2 nC 9 GeV 

50 um1.1 mm 20-23 GeV 
20 um
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Challenge - Wakefields, microbunching, longitudinal space charge, CSR affect 
distribution: Computationally expensive to model online



FACET-II schematic and parameters

• Main goal: demonstrate energy depletion of drive bunch 
and preservation of emittance. 

• RF photo injector replaced thermionic gun + damping rings 
• Challenges for diagnostics and control -  

• measure LPS and stabilize compression w.r.t. shot-to-
shot jitter of linac parameters.

Joshi et al, “PWFA experiments at FACET-II”, Plas. Phys. Contr. Fus. 60 (2018)



• Virtual diagnostic is trained with 55 simulations scanning 
linac/beam parameters within expected jitter ranges 

• Inputs fed to ML model include random error to simulate 
measurement accuracy.

LPS virtual diagnostic for FACET-II



FACET-II Single bunch simulations

3125 total shots
Score starts dropping 
when # training shots < 600

• ML predictions given 10 scalar diagnostic readings as inputs show very good 
agreement with the current profile output at the IP. 

• At least ~ 600 shots necessary to achieve good accuracy for these jitter ranges.  

• Some shots (Imax > 60 kA) are beyond the resolution of the TCAV. A robust way of 
flagging these shots is important for us to trust the output of the virtual diagnostic.
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Mean
Without 
BC20 Ipk

Without
BC11-14
Ee or εn

Smaller
BC20 Ipk Error

FACET-II Single bunch simulations

• Results for the LPS prediction show similar 
agreement between NN and simulation. 

• Sensitivity study (removing diagnostics from ML 
input) shows that the most critical diagnostic is 
the peak current measurement after BC20.



LCLS experimental proof of concept

LCLS Experiment:

Machine parameters scanned: 
L1s phase from -21 to -27.8 deg

BC2 peak current from 1 to 7 kA

Inputs to ML model:
L1s voltage & phase readbacks,  

L1x voltage, BC1 and BC2 current

LCLS accelerator schematic

• ML prediction of LPS/current profile from five 
scalar inputs agrees well with measurements. 

• Bad predictions can result from large 
discrepancy between diagnostic input (e.g. 
BC2 current) and XTCAV current (see bad 
shots).

• Flagging bad shots (e.g. with redundant 
diagnostic) is important for trusting virtual 
diagnostic prediction. 
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Good agreement in between ML prediction and 
simulated TCAV measurement
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FACET-II Two-bunch simulations with TCAV
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LPS optimization using virtual diagnostic

• ML prediction of LPS used 
with Nelder-Mead optimizer 
to tune L1-2 phases/
voltages for desired LPS. 

• Initial settings outside 
training set of ML model. 

• Model shows ability to 
interpolate within training 
data.



Optimization using ML inverse model
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• Goal is decrease tuning time and improve beam quality 

for target beam parameters

NN provides “smart” initial guess for optimizer - avoids getting 
stuck in local minima to converge to correct solution
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stuck in local minima to converge to correct solution

Optimization using ML inverse model

2. Neural Net

3. New machine  
settings

4. Actual 
LPS

5. Feedback 
(calculate difference)

1. Target LPS

Flow diagram for the NN + feedback

⟲
• Goal is decrease tuning time and improve beam quality 

for target beam parameters 

• NN and an optimizer used to automatically change 
machine parameters to obtain a desired LPS 

• By making an initial guess using the NN, the optimizer 
feedback is able to achieve the desired LPS

Feedback + MLFeedback no ML

Initial Target
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Conclusion and future work

• We are developing an ML-based virtual diagnostic for single shot prediction of the 2D LPS at 
FACET-II. 

• Successful implementation will provide additional information for user experiments and a signal to 
include in feedback algorithms for LPS control and tuning. 

• Our work shows the feasibility of the virtual diagnostic to accurately predicting the LPS given few 
non-destructive diagnostic inputs and LPS in simulation (FACET-II) and experiment (LCLS).  

• Resolution limits of XTCAV will result in discrepancies between predicted current profiles and 
actual current at IP.  

• Accurate quantification of the prediction uncertainty is under study and will be incorporated in the 
ML diagnostic as it is integrated in the control system for regular operations.



Thank you!
Many thanks to the following colleagues who contributed to this work:  

A. Edelen, G. White, A. Scheinker, B. O’Shea, A. Hanuka, D. Storey, M.J. Hogan, 
V. Yakimenko, S. Gessner, A. Lutman, D. Bohler, L. Alsberg, M. Alverson, LCLS 

Operations Group  


