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ielectric laser acceleration

?
What makes a DLA: Obviously laser driven, but also:

Accelerating mode: w = fck,
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An accelerator on a chip

ACHIP design goals:

« Compact, chip-scale
accelerator
— High gradient
— Modular accelerator
components

 Robust fiber-based
laser system

— Modest drive laser
energy

— MHz rep rate
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Mockup of potential DLA components

From SLAC newsroom: “$13.5M Moore Grant
to Develop Working ‘Accelerator on a Chip’
Prototype” (November 19, 2015)
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Relativistic structures experiments ucCLA

Summary of DLA results at UCLA
Pegasus (in collaboration with SLAC)

- Observation of non linear dielectric
response

- Pulse-front tilt to extend
interaction region

- 0.9 GV/m gradient
- 300 keV energy gain
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Experimental layout: Pegasus Lab UCLA

« 3-14 MeV student-run university-size
accelerator beamline optimized for sub-

pC beams
» Ultralow charge beams with high peak
brightness or phase space density:
— DLA: few fs acceleration bucket, sub-
micron aperture
— High resolution ultrafast electron
diffraction
— Single shot imaging / UEM
— THz acceleration / amplification

Electron spectra
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Record gradient & nonlinear effects UCLA

Relativistic electrons + 45fs laser > 850 MV/m effective gradient
— But limited by dephasing!

Energy gain vs. incident laser field Anatomy of nonlinear dephasing
Fluence incident (J/cm?)
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Peak accelerating field is kE¢g—1.8 GV/m

D.Cesar et. al. Comm Phys 2018



Longer interaction: Pulse front tilt UCLA
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A tilted wavefront changes g:
B=w/(ky+®sing)
—  Curved wavefront >
moving bucket
— Study bucket properties

Free space technique to
study longer interactions

~ £=0997: L =700um,
AE = 315 keV

D.Cesar et. al. Opt.Exp. 2018
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How to do better: overcoming

resonant defocusing

Control ¥ to switch to focusing phase Transverse Longitudinal
Stability Stability
— All optical scheme P
— Second order, “Ponderomotive” A
Pz
cos(Pres + f(2))
a cos(P)
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f(z) square wave > FODO lattice, Alternating
Phase focusing scheme
see U. Niedermeier PRL 121,214801(2018)

Ponderomotive motion

f(z) sinusoidal > —Mathieu equation g; h
B.Naranjo et. al. PRL 2012 ? 0.
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UCLA approach : soft control on DLA

focusing and acceleration

Use programmable phase mask to design ¥(z)

— DLA’s are broadband - external phase is preserved
 Experimental proof by tilting the wavefront & Kerr effect

— Online correction / many knobs for optimization
— Can work for non-relativistic electron as well !

Imaging lens Programmable Liquid Crystal
phase mask (LC-SLM)

4 Fast oscillation for

—— focusing
| ? Imaging lens \
40 mJ,60fs ) 1§

Ti:Sapphire

Grating

: Pulse front tilt +
: phase shaped beam

e-beam I'ITI'ITITI1TI'I'I'ITI

2cm x 80um DLA Roughly quadratic phase to match
accelerating electrons



Matlab optimizer

e 80 keV
e 2 um laser drive
« 5 mm long structure

35 % captured with
500 pm emittance

 Not fully optimized

Phase profile

Transverse phase space
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Towards MeV acceleration







Cm-long structures for MeV energy gain

: UCLA
experiment

» Single side illumination !

« Two new structures developed: Structure Proposal 1 (scale 7.62:1)
— DBR + grating. T R
- Bond_two different gratings. _ tem*2em —_—
« Diffraction measurements using short —gvy
Il Grove

wavelength lasers to test response

« Damage measurements performed at
SLAC
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All major hardware In place an commissioned UCLA

Installed and commissioned

Amplitude Trident laser
800 nm ,40mJ—-80fs, 10 Hz
Partially funded by Moore (— 50 %)

Chirped pulse to avoid non linearities
in the transport (can be compensated
by tuning pulse front tilt lenses)

Synchronization to RF complete

Exulus liquid crystal phase mask
Soft-structure computer control

Parabolic chirp creates linear
acceleration

Modulation for ponderomotive
focusing




Optical Manipulation Setup

« Pre-aligned breadboard to be ported to electron beamline prior to
experiment

 Interferometric phase measurement diagnostic
« Timing synchronization and pulse front tilt measurement undergoing
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Some general considerations on matching

beam brightness for DLA application

6D brightness (density in phase space) Liouville

invariant = phase space volume: det(o)

Common idea of phase space volume as
incompressible fluid

For example, using very strong lenses we can
always shape the beam to fit a very small
(arbitrarily small) aperture in x-y space, by
paying the price of largely increasing the bea
mdivergence.

...but we can’t fit an arbitrary small aperture in
X-pXx space !

Symplectic camels and the non squeezing
theorem (Gromov, 1985)

Gromov, M. L. "Pseudo holomorphic
curves in symplectic

manifolds”. Inventiones
Mathematicae. 82: 307- 347 (1985)
B. Carlsten, PRSTAB, 14, 050706
(2011): eigen-emittances

The Symplectic Camel: [t is impossible to move o ball of radius = 1 symplectically
Srom one side of the wall to the other.
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INncrease transmission

Flat beam transform beamline

« Magnetized beam + Skew quadrupole
beamline implemented at Pegasus

« Machine feedback algorithms to tune the |, -~ @ ™ Rato(t)
quadrupoles being developed (starting a | — — 10

new collaboration with SLAC) X

1x107°
« Magnetic field dependent QE on 001 o1 1 bar 01 1
cathode?!?

« Simulations predict 2 nm x 200 nm €4 = Eopr £ L e =~
emittances and 1.5 um x 20 um spot B eoB ¢
sizes at DLA entrance

11077 1x10°

S
|

 Transmitted fraction *should* improve
by factor of 10x




Measuring nm-scale Emittances

« Large emittance scales as initial spot size squared
« Small emittance approximately constant, but an order of
maghnitude larger than expected

— Smaller than thermal emittance of equivalent round beam
(i.e. 80 nm with 100 um rms spot size on cathode)

— Emittance Ratio >20 -
e Spurious quadrupole component in gun/solenoid
« Measurement limitation | .
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Preliminary Experimental Run (July 2019) UCLA

Purpose of the experiment: verify that we can get |
some detectable transmission through structure
over full 2cm length of the structure.

Gratings: 400 nm gap
Spaces between: 1.2 um gap
Alignment channel: 250 um gap

DRZ TEM grid BBO

Averaging 10 frames.
beam on beam off

downbeam view

Observed transmission through the 1.2 micron gap
2 cm long structure !!!
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Conclusion

« DLA MeV energy gain experiment timeline and plan

Next run planned to start in October at UCLA
Trident laser transport & coupling to DLA structure
Synchronization and spatial overlap

Improved detection (light collection, new camera)

e DLA Outlook

Remarkable progress in DLA acceleration (non relativistic)
» prebunching and net acceleration
» attosecond-electron bunches
* APF transport demonstration

All-optical MeV e-source in sight !
All integrated on-chip structures

Need to accelerate/transport as much charge as possible for
any reasonable application

High repetition rates and high efficiency
Lots of interesting accelerator and beam physics !



Comparison of PIMAX3 vs. EMICCD

PIMAX4

PI-MAX 4

ICCD & emlCCD Cameras

* New model PIMAX4 (HR — GEN3 intensifier) — tested at
UCLA Aug 21 2019

 Looking at dark current signal (HV: 34 kV, Solenoid
Setting:1.1)

e 100 um Yag. Nikon lens f1.2 f = 50 mm - 20 um/pixel

« Signal 40 times larger

 Background increases too, but can be smoothed

Gen NIl Intensifiers .
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Effect of Magnetized Cathode
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» Dark current decreases rapidly with magnetic field on cathode

* QE also decreases by ~20%
» Possible explanations related to dark current
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Skew Quadrupole Optimization
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Manual Optimization

Maximized up-right aspect

ratio on screen downstream
After focus upstream

Based on results in particle °
tracking simulations

Collaboration with

— Measurements I
= NN Predictions
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Machine Learning

Machine model able to tune
quad gradients with same
efficacy as manual tuning

Model very consistent within a
day

Somewhat consistent day-to-
day
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~— NN Predictions

Neural network (NN) predictions of
spot size measurements. Data after
red line was taken on a new day.

Left: NN was trained only on data from
before the red dashed line. Right: NN
was trained on data from all days.

0 5.0k
15.0k

10.0k
24



	Slide Number 1
	Dielectric laser acceleration
	An accelerator on a chip
	Relativistic structures experiments
	Experimental layout: Pegasus Lab
	Record gradient & nonlinear effects
	Longer interaction: Pulse front tilt
	How to do better: overcoming resonant defocusing
	UCLA approach : soft control on DLA focusing and acceleration
	Matlab optimizer 
	Slide Number 12
	Cm-long structures for MeV energy gain experiment
	All major hardware in place an commissioned installed and commissioned
	Optical Manipulation Setup
	Some general considerations on matching beam brightness for DLA application�
	Increase transmission :�Flat beam transform beamline
	Measuring nm-scale Emittances
	Preliminary Experimental Run (July 2019)
	Acknowledgements
	Conclusion
	Comparison of PIMAX3 vs. EMICCD PIMAX4
	Effect of Magnetized Cathode
	Skew Quadrupole Optimization

