

NATURWISSENSCHAFTLICHE FAKULTÄT

Generation and characterization of attosecond micro-bunched electron pulse trains via dielectric laser acceleration

Norbert Schönenberger

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

norbert.schoenenberger@fau.de

Particle accelerators: from RF to optical/photonic drive?

RF cavity (TESLA, DESY)

	Conventional linear accelerator (RF)
Based on	(Supercond.) RF cavities
Peak field limited by	Surface breakdown: 200 MV/m
Max. achievable gradients	100 MeV/m

Particle accelerators: from RF to optical/photonic drive?

RF cavity (TESLA, DESY)

	Conventional linear accelerator (RF)	Laser-based dielectric accelerator (optical)
Based on	(Supercond.) RF cavities	Silicon nano structures
Peak field limited by	Surface breakdown: 200 MV/m	Damage threshold: 30 GV/m
Max. achievable gradients	100 MeV/m	10 GeV/m

Acceleration by phase-synchronous propagation

Setup

Norbert Schönenberger

Dielectric Laser Acceleration

Incident field: 0.5 GV/m Pulse duration: 650 fs P. Yousefi et al., Optics Letters Vol. 44, Issue 6, pp. 1520-1523 (2019)

Norbert Schönenberger

Dielectric Laser Acceleration

Incident field: 0.5 GV/m Pulse duration: 650 fs

P. Yousefi et al., Optics Letters Vol. 44, Issue 6, pp. 1520-1523 (2019)

Norbert Schönenberger

Streak camera

http://rasmus-ischebeck.de/media/Accelerator%20Physics/Drawings/PDFs/slides/Streak%20Camera.html

Norbert Schönenberger

Streak camera

LASER PHYSICS FAU 6

http://rasmus-ischebeck.de/media/Accelerator%20Physics/Drawings/PDFs/slides/Streak%20Camera.html

Norbert Schönenberger

Norbert Schönenberger

Norbert Schönenberger

Norbert Schönenberger

EAAC September 2019

FAU

Norbert Schönenberger

EAAC September 2019

Fau 7

Dielectric Laser Acceleration: Bunching

Norbert Schönenberger

Dielectric Laser Acceleration: Bunching

Shortest bunches

Bunching

Minimal bunch length achievable ~125 as

Net acceleration

Norbert Schönenberger

Net acceleration

buncher

strong acceleration

Norbert Schönenberger

Net acceleration

LASER PHYSICS

11

FAU

Measured net acceleration

- Relatively low energy gain due to large input energy spread into secon structure
- Inclusion of demodulator would greatly increase accepatance

Phase-reset structure – towards a photonic LINAC

13

Alternate between transverse focusing-longitudinal defocusing and transverse defocusing-longitudinal focusing

Alternate between transverse focusing-longitudinal defocusing and transverse defocusing-longitudinal focusing

Alternate between transverse focusing-longitudinal defocusing and transverse defocusing-longitudinal focusing

Alternate between transverse focusing-longitudinal defocusing and transverse defocusing-longitudinal focusing

Alternate between transverse focusing-longitudinal defocusing and transverse defocusing-longitudinal focusing

net focusing

83 keV → >1 MeV:
56% transmission for 100pm,
93% for 25pm emittance

U. Niedermayer, T. Egenolf, O. Boine-Frankenheim, P. Hommelhoff, Phys. Rev. Lett. 121, 214801 (2018)

Norbert Schönenberger

Thank you for your attention!

