

Investigating the stability of a GeV-class laser wakefield accelerator using fewcycle shadowgraphy and polarimetry

Alexander Sävert

Helmholtz-Institute Jena Institute of Optics and Quantum Electronics, FSU Jena

EAAC, 16th September 2019

Acknowledgement

Maria Reuter, Maria Leier, Malte C. Kaluza

université BORDEAUX Kristjan Poder, Jason M. Cole, Stuart P.D. Mangles, Zulfikar Najmudin

Evangelos Siminos

Stefan Skupin

www.hi-jena.de

Fundamentals of Few Cycle Microscopy

Spatial resolution

$$d \approx 10 \ \mu m \ @ n_e = 10^{19} cm^{-3}$$

$$d = \frac{\lambda_{probe}}{n\sin\alpha}$$

Microscope

Temporal resolution

(Single)Few-Cycle Probe pulses

Helmholtz Institute Jena

www.hi-jena.de

Few Cycle Probe Beamline @JETi40 & JETi200

www.hi-jena.de

M.B. Schwab, A.Sävert., et al., Appl. Phys. Lett. 103, 191118 (2013)

Few Cycle Microscopy @JETi40

pump pulse

imaging lens

electrons xrays,...

few cycle probe pulse

M.B. Schwab *et al.*, APL **103**, 191118 (2013) A. Sävert et al. PRL **115**, 055002 (2015) super sonic gas jet

HI JENA Helmholtz Institute Jena

www.hi-jena.de

Diagnostics

Detailed measurement as input for simulation

Interferometer & 2-channel system (Shadowgraphy, polarimetry, temporal filtering)

www.hi-jena.de

18.09.2019

Helmholtz Institute Jena

Shadowgraphy Plasma wave evolution

Synthetic Diagnostics

Characterizing magnetic fields - Faraday effect

Few Cycle Microscopy: Polarimetry - temporal evolution

Few Cycle Microscopy: Polarimetry - temporal evolution

FC Polarimetry: Temporal evolution

www.hi-jena.de

Outlook

JETi40

Wavelength:	800 nm
Energy on target:	0.8 J
Pulse duration:	27 fs
Peak power:	30 TW
Repetition rate:	10 Hz

JETi200

Polaris

Wavelength:	800
Energy on target:	5 J
Pulse duration:	17 fs
Peak power:	300
Repetition rate:	5 Hz

800 nm 5 J 17 fs 300 TW 5 Hz

Wavelength:	1030 nm
Energy on target:	17 J (54 J)
Pulse duration:	100 fs
Peak power:	170 TW
Repetition rate:	1/50 Hz

Emax ≤ 200 MeV

Emax > 950 MeV

Emax ~ 190 MeV

www.hi-jena.de

Conclusion

- Few Cycle Microscopy recording Shadowgrams and Polarograms gives a deep insight into plasma wakefield acceleration
- Tracking the position of electron bunches in the plasma and the evolution of the plasma wakefield
- Completely non-invasive, real time diagnostic which opens the path to feedback loops (including plasma parameters)
- Everything scales: Lower plasma densitiy requires SWIR/MIR/THz few cycle probe pulses, which are available.

www.hi-jena.de

Helmholtz Institute lena