Electron acceleration in merging laser wakefields

Olle Lundh *et al.*

Department of Physics, Lund University, Sweden

4th European Advanced Accelerator Concepts Workshop (EAAC)

Isola d'Elba, Italy

15-21 September 2019

WALLENBERG ACADEMY FELLOWS

Outline

X-ray generation and imaging applications

Acceleration and X-rays by intersecting wakefields

STIFTELSEN för Strategisk Forskning

Ionization injection

Pak et al, Phys Rev Lett 104, 025003 (2010)

Hansson et al, Plasma Phys Control Fusion 58, 055009 (2016)

Betatron X-ray source

Betatron frequency

$$\omega_{\beta} = \frac{\omega_p}{\sqrt{2\gamma}}$$

Betatron wavelength

$$\lambda_\beta \approx \lambda_p \sqrt{2\gamma}$$

Critical energy $E_c = \frac{3}{2} \hbar \gamma^3 \omega_\beta^2 r_\beta / c$

Divergence

$$\Theta \approx \omega_{\beta} r_{\beta} / c$$

S Corde *et al*, Rev Mod Phys **85**, 1 (2013)

X-ray polarization

Stable, elliptical X-ray beams with ionization injection

-> X-rays are preferentially polarized along laser polarization

A Döpp et al, Light: Science and Application 6, e17086 (2017)

X-ray spectrum

Critical energy: 2-3 keV Peak flux: 1-2 • 10¹¹ ph/sr Divergence: 30 × 40 mrad ~4 • 10⁸ photons in FWHM

K Svendsen et al, Optics Express 26, 33930 (2018)

X-ray source size

25 µm tungsten wires

2.8

K Svendsen et al, Optics Express 26, 33930 (2018)

Phase-contrast tomography

Single-shot phase-contrast image ~3 µm structures can be resolved

~10 μ m structures can be resolved in tomogram

Kristoffer Svendsen

100 µm

100 µm

K Svendsen et al, Optics Express 26, 33930 (2018)

Fuel injection sprays

Understanding the breakup and atomization of fuel sprays is essential for improving engine efficiencies.

ChallengesFast dynamics (ns to μs)Highly scattering mediaMultiple jets in the same spray

ApproachX-ray imaging (for mass flow)2-photon light sheet LIF (for atomization)

Diego Guenot

Simultaneous flourescence and X-ray imaging

D Guenot et al, submitted

Outline

X-ray generation and imaging applications

Acceleration and X-rays by intersecting wakefields

STIFTELSEN för Strategisk Forskning

Multi-beam laser wakefield acceleration

Braided Light

Mutual attraction of laser beams in a plasmas because of a mutual coupling from relativistic mass corrections

C. Ren et al., Phys. Rev. Lett. 10, 2124 (2000)

Intersecting wakefields

"Radiation emission from braided electrons in interacting wakefields" E Wallin, A Gonoskov, M Marklund, Phys Plasmas **24**, 093101 (2017)

 See also
 M. Wen et al., Phys. Plasmas 17, 103113 (2010)

 L. Yang et al., Phys. Plasmas 20, 033102 (2013)

 J. Elle et al., New J Phys 20 093021 (2018)

Intersecting wakefields

3D PIC simulations with ELMIS

Laser: 1 J, 20 fs, 8 μ m spot, a_0 = 5.6 Plasma: n_e = 9.5×10¹⁸ cm⁻³

E Wallin, A Gonoskov, M Marklund, Phys Plasmas 24, 093101 (2017)

Braided electrons

Small angles (few degrees): Braided electrons and higher radiated energy

E Wallin, A Gonoskov, M Marklund, Phys Plasmas 24, 093101 (2017)

VEGA Laser System at CLPU

www.clpu.es

ggatti@clpu.es

Experimental arrangement

One laser beam at the time

Dispersed electron beams of 5 consecutive shots for each half-beam

Left half-beam

Right half-beam

Energy [MeV]

Two laser beams

Collision position

Thomson scattering

Dispersed electrons

Energy [MeV]

Short delay

X-ray yield

When merged electron beams are produced, approx. x3 enhancement in the forward direction of the X-ray camera

Interference, phase and stability

Fluctuations in the relative phase (e.g. by vibrations or plasma dispersion) -> impacts location of nodes in the standing wave *Solution*: crossed polarisation

Outlook: Rephasing

Outlook: Positron acceleration

J Vieira et al, Phys Rev Lett 112, 215001 (2014)

Acknowledgment

WG1, Thursday 18:20 "Generation of a spectrally two-component electron beam in a laser-wakefield accelerator" Jonas Björklund Svensson

Some of the Collaborators	IOA : V Malka <i>et al</i>	Imperial College: SPD Mangles et al.
	CFA: X Davoine	ELI-Beamlines/HZDR: K Falk, M, Schmid
	LPGP: B Cros et al.	MAX IV: S Thorin, E Mansten, F Curbis, S Werin et al.
	CLPU: G Gatti <i>et al.</i>	Chalmers: M Marklund, T Fulöp et al.
		Umeå Univ: L Veisz <i>et al.</i>

Summary

Betatron X-rays and imaging applications

- ✓ Well suited for high-resolution micro-tomography
- ✓ Time-resolved studies of injection spray breakup and atomization

Acceleration and X-rays from intersecting wakefields

- ✓ Multi-e-beam generation with separated laser beams
- ✓ Synchronized and overlapped lasers give single electron beam along the bisector angle
- ✓ Suggests electron braiding in a common accelerating structure

