Status Report on the DLA Experiments at the SINBAD/ARES Linac

<u>F. Mayet³, R. Assmann, R. Brinkmann, F. Burkart, H. Cankaya¹, U. Dorda, L. Genovese,</u> I. Hartl, S. Jaster-Merz, F. Kärtner¹, W. Kuropka³, F. Lemery, C. Mahnke, B. Marchetti, M.Trunk² DESY, Hamburg, Germany, ¹CFEL Hamburg, Germany, ²University of Hamburg, Germany, ³also at University of Hamburg, Germany

Introduction

- The Accelerator on a CHip International Program (**ACHIP**) aims to demonstrate a working prototype of a particle accelerator on a chip until 2021
- DESY will conduct related test experiments at its **SINBAD** facility (**ARES linac**)
- Funded by the Gordon and Betty Moore Foundation >
- Two main experiments have been internally proposed to be started beginning of 2020 [1] > Stage 1: External injection of relativistic ultra-short single bunches into a grating-type DLA
 - > Stage 2: External injection of relativistic phase-synchronous optical scale microbunch trains

Selected Components and Status

Undulator and Chicane (Microbunching Setup)

Parameter	Value
Magnets	13
Full oscillation periods	5
Fixed gap size	$10.7\mathrm{mm}$
Entrance angle	0.5°
$\langle B_0 \rangle$	$0.61\mathrm{T}$
Undulator parameter	1.27
Resonant energy @ $2050\mathrm{nm}$	$52.42\mathrm{MeV}$
Residual field @ $30 \mathrm{cm}$ horizontal distance	$50\mu T \max$

- > Fixed gap design based on PETRA U23 🗸 > Built by UHH workshop ✓ > Magnets and poles (VAC) already at DESY 🗸
- > Custom Ti adjustment screws ordered
- > Supports being designed by DESY engineers

Experimental Chamber

- > Built internally at DESY (incl. supports) </
- Measured by alignment group
- Permanent loan to DESY/SINBAD
- Currently being prepared by DESY vacuum group

SmarPod 6D positioning system bought

- Target platform built internally at DESY
- Sample holders (design by PSI colleagues) received
- > Custom screen holders to be produced at DESY
- > Lens holder in final design phase (UHV-compat.)
- Components for the CTR bought and cleaned for UHV (fiber, coupler, feedthrough) 🗸

DLA Laser

Installed at ARES cathode laser lab Laser beam line received from VAB > Vacuum transport beam line installation during the week of this conference

Parameter	Value	
Type	Ho:YLF	
λ	$2050\mathrm{nm}$	
$\Delta\lambda/\lambda$	0.24%	
$E_{\rm pulse} \ ({\rm max})$	$2.2\mathrm{mJ}$	
$E_{\text{pulse}} \text{ (compressed,max)}$	$1.9\mathrm{mJ}$	
E_{pulse} (Kagome,max)	$0.7\mathrm{mJ}$	
$f_{ m rep}$	1 and 5 kHz	
$t_{ m pulse}$	$3\mathrm{ps}$	
$t_{\rm pulse}$ (transform limited)	$1.25\mathrm{ps}$	
$t_{\rm pulse}$ (Kagome)	$0.4\mathrm{ps}$	

High-Sensitivity Detector (STRIDENAS)

Value

 10.02×10.02

Unit

 $mm \times mm$

Sensor Size

Strip Material

(ID 148, Thursday)

> To be installed at the high-energy spectrometer, to be able to detect spectral

> Last Prototype of an XFEL Phase Shifter > Acts like a 4 dipole chicane; > Sufficient R₅₆ for ARES working point (up to 0.7mm @ 50MeV) ✓ Permanent loan to DESY/SINBAD Supports being designed by DESY engineers

Parameter	Value
Min. gap (mm)	$10 \ (\rightarrow B_0 = 1.49 \mathrm{T})$
Max. gap (mm)	$> 100 \ (ightarrow B_0 < 10 { m mT})$
Gap control accuracy (mm)	± 0.05
Magnet material	NdFeB
Yoke material	ARMCO, soft iron annealed at $850 ^{\circ}\text{C}$
Pole material	FeCo, annealed at 850°C
Phase shifter period length, $\lambda_{\rm p}$ (mm)	55

Ligh consitivity	(option	an actromator for MD diag	
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	I ODICAL		
ingri conoravit	option		

Installation of internal components soon

Bulk Material		р	
Number of Stri	\mathbf{ps}	103	
Strip Pitch	μm	74.5	
Sensor Thickne	ess µm	310	

See talk/paper by S. Jaster-Merz

features with sub-fC charges Designed as part of a M.Sc. thesis First tests at DESY test beam > Design currently being altered for UHV

ARES Linac – Timeline

>

> Gun conditioning on-going, first beam expected in week 39/2019 (was delayed by waveguide problems, which are now solved \checkmark) Linac conditioning (TWS) on-going and on track > Matching section, incl. supports for the spectrometer installed \checkmark > High-energy spectrometer dipole already in the tunnel \rightarrow to be installed during the week of this conference Installation of EA1 until end of 2019 > Installation of the EA1 microbunching setup mid 2020

This work was supported by the Gordon and Betty Moore Foundation under grant GBMF4744 (Accelerator on a Chip).

[1] F. Mayet et al. Simulations and plans for possible DLA experiments at SINBAD. Nuclear Inst. and Methods in Physics Research, A (2018).

