

Geometric optimization study for a Dielectric Laser Accelerator

Supervisors: Prof. Carsten Welsch, Dr. Javier Resta Lopez Collaborator: Dr. Guoxing Xia

Outline

- Motivation
- Simulation study for geometry optimization
 - Synchronicity condition
 - Cylindrical and cuboid dual grating structures
 - PIC simulations of non relativistic and relativistic electron beams
- Conclusions from the comparative studies
- Future goals

Motivation

DLAs are potential candidate for acceleration gradient in the GV/m regime from the grating-shaped dielectric microstructures and can have applications in cancer treatment.

J. Breuer/MPI

SLAC

Gil Travish, UCLA

R. Joel England, "Dielectric laser accelerators", Rev. Mod. Phys., 86:1337–1389, Dec 2014

Motivation

(a) K. J. Leedle, *et al.*, (b) A. Aimidula, *et al*, (c) T. Plettner, *et al*, (d) A. Aimidula, *et al*, (e) C.-M. Chang *et al*, (f) any combination

Peyman Yousefi *et al*, with distributed Bragg reflectors

K.P. Wooton, SLAC-PUB-16810

Simulation study for geometry optimization

• Simulation Code: CST Studio suite

Solvers:

Time domain for Electric field

Particle in Cell for charge particle dynamics

Synchronicity condition

$$mk_g + k/(\beta \cos \alpha) = 0$$

m = order of harmonic, k_g = wavevector related to grating period, k = wavevector of incident EM wave, β = Lorentz factor and α = grating tilt angle.

E. Peralta . Accelerator on a chip: Design, fabrication, and demonstration..... Thesis (Ph.D.)–Stanford University, 2015.

Two different shapes, but with same grating parameters

(a) Cylindrical and (b) cuboid shaped dielectric structures. It's a dual pillar with 4 Bragg reflectors.

Peyman Yousefi *et al*, "Dielectric laser electron acceleration in a dual pillar grating with a distributed Bragg reflector", Opt. Lett. 44, 1520-1523 (2019)
Y. Wei *et al*, "Dual-gratings with a Bragg reflector for dielectric laser-driven accelerators", Physics of Plasmas 24, 073115 (2017)

Parameters for non relativistic case

Electron beam initial energy = 28.4 keV, $\beta \approx 0.3$

Laser wavelength = 2000 nm, pulse duration = 100 fs, electric field amplitude = 1.5 GV/m, material = silicon

Parameter	Value (in nm)
А	320
В	320
С	200
W	1000
B _r	145
V _g	250
λp	640

Electric field distribution

Maximum field obtained = 5.19 GV/m

Maximum field obtained = 2.7 GV/m

2-D cut of the electric field amplitude distribution. Upper pillars are shifted by one grating period to achieve higher field amplitude

Energy gain (cuboid structures)

Energy gain = 2500 eV, Acceleration gradient = 416 MeV/m, Particles = 77598

Energy gain (cylindrical structures)

Energy gain = 600 eV, Acceleration gradient = 97 MeV/m, Particles = 33680

Energy spread

Parameters for Relativistic case

Electron beam initial energy = 1 MeV, $\beta \approx 0.94$

Laser wavelength = 2000 nm, pulse duration = 100 fs, electric field amplitude = 1.5 GV/m, material = silicon

y

Parameter	Value (in nm)
А	900
В	900
С	200
W	1000
B _r	147
Vg	500
λp	0

Electric field distribution

Cuboid

4e+08 0+ 4e+08 -8e+08 -1/2e+09 -1.6e+09 -1.94e+09 +

Cylindrical

Maximum field obtained = 4.66 GV/m

Maximum field obtained = 2.91 GV/m

2-D cut of the electric field amplitude distribution.

¥/m

1.94e+09

1.2e+09 -

8e+08

Energy gain (cuboid structures)

Energy gain = 5 keV, Acceleration gradient = 308 MeV/m, Particles = 72479

Energy gain (cylindrical structures)

Position-x (μ m)

Energy gain = 6 keV, Acceleration gradient = 370 MeV/m, Particles = 30151

Energy spread

Conclusion of the comparative study

	Non-Relativistic	Relativistic
Energy gain	Cuboid > Cylindrical	Cuboid < Cylindrical
Acceleration gradient	Cuboid > Cylindrical	Cuboid < Cylindrical
Energy spread	Cuboid > Cylindrical	Cuboid < Cylindrical
No. of particles	Cuboid > Cylindrical	Cuboid > Cylindrical

Future directions

- Algorithmic approach for the determination of most suitable shapes.
- Analyse and compare the difficulties and precision in the manufacturing of various structures.
- Experiments.

Acknowledgement

I thank my supervisors for their kind support and guidance throughout this period. I acknowledge Dr. Guoxing Xia for his discussions about this research and Dr. Yelong Wei for handling my questions entrancingly.

Thank You!

Questions?