DESIGN STUDIES FOR PERMENANT MAGNETIC QUADRUPOLE TRIPLET FOR MATCHING INTO LASER DRIVEN FIELD WAKE **ACCELERATION EXPERIMENT WITH EXTERNAL INJECTION AT SINBAD**

S. Yamin^{†,*}, R. W. Assmann[†], U. Dorda[†], F. Lemery[†], B. Marchetti[†], E. Panofski[†], P. A. Walker[†] [†]Deutsches Elektronen Synchrotron, DESY, Hamburg, Germany *Also at Universität Hamburg, Hamburg, Germany

Corresponding Author: sumera.yamin@desy.de

WG 7, Contribution ID: 277

and TW structur	res → in progre	SS	Schemat	c of ARES	Linac with Bunch	Compressor an	d matching section	on into LWFA	→ test novel diagnostics devices		
Motivation for	r External Inied	tion	Match	ing Regui	rements of LWFA	with External I	njection	Design Constraints for PMQ Triplet			
 Stable LWFA: reproducible ca accelerator tea power plasma w The RF-based manipulation of electron bunches Better control a plasma experim 	nes the F-based n high- nics ows the s of the blasma n of the	 LWFA demands a highly focused symmetric beam with mm-scale beta functions Non-matched: betatron oscillations					 Collinearly injected laser and electron beam into the plasm channel. Strict constraints on both transverse and longitudinal dimensions for the design of PMQ focusing system. Compressed beam→ Strong space charge force→ Longer drisshould be avoided Drift ~3.5 m: space required for diagnostics, vacuum equipment an focusing mirror of the laser. The beam pipe size is chosen to accommodate the laser and mirror dimensions required for focusing the 100 TW high power laser. A hole in the mirror allows the electron beam to pass through, ar 				
Opti	imization of AF	RES WP1			Beam Paramet	ers with 2 TW st	ructures	collinearly to t	he laser beam, enters the plasma cell. oint, the laser beam has a diameter (FWHM) of 53.		
WP1: sub fs bunch with smallest arrival time jitter with pure magnetic compression					ieter	At BC exit	At plasma entrance	µm. ❖ Laser beam a	 μm. Laser beam also has to pass through the PMQ. Inner diameter 		
As probes with good time resolution for LWFA, DLA				Beam	Energy (MeV)	100	100	PMQ should be larger than the laser spot size.			
 Short bunches are extremely space charge dominated With ARES energy upgrade, using 3rd TW structure, space charge is considerably reduced and hence much higher peak current can be delivered to plasma cell. 					Charge (pC)	0.79	0.79				
					length rms (fs)	0.42	0.89				
					(pi.mm.mrad)	0.11/0.095	0.114/0.118	Laser cm b	Beam in 10 0.05 eam Pipe:		
✤ 3 rd TW structure gives a wide spectrum of tunability of WP's					mm)	9.24e3/8.21e3	7.57/7.58	82.8 m (48.7 r	82.8 mm Diameter 0.04 (48.7 mm FWHM) on the focusing 0.03 lens (focal length		
for various applications.						-2.55/-2.81	-0.40/-0.22	on th lens (f			
					(µm)	71.8/63.1	2.09/2.13	4	1.2 m) 0.02 - Plasma Cell		
Beam Parameters with 3 I W structures					energy spread (%)	0.13	0.28		0.01		
Parameter	At BC exit	At plasma entrance		Peak C	Current rms (kA)	0.53	0.25		E 0 Laser beam size @ 0.5 m before plasma cell =10 mm		
Beam Energy (MeV)	200	200	0.8			1	×10 ⁻³				
Bunch Charge (pC)	0.80	0.80	0.6		0.9 0.8 0.6		.9 .8 4	0.3 0.9 0.8	53.2 μm Diam (31.3 μm FWH		
Bunch length rms (fs)	0.20	0.27	0.2		0.7 0.4	c	.7 2	0.25 0.7	in the focal po		
$_{nx}/\epsilon_{ny}$ (pi.mm.mrad)	0.10/0.098	0.110/0.117					$\int_{-5}^{0} \frac{d}{dt} \int_{-2}^{0} \frac{d}{dt}$		-0.04		
β_x/β_y (mm)	16.6e3/52.65e3	3.3/3.4	-0.4				·4		-0.05		
χ/α	-4.2/3.5	-0.6/0.4	-0.6		0.2 -0.6		-6	0.1	focusing lens @ 4.2m Incoupling Mirror @ 2.8m		

Evolution of the laser and electron beam along the direction of beam propagation. The origin here is set at the focal point of the laser which is the entrance position of plasma cell. A Gaussian laser beam is assumed.

DESY.

CONCLUSION AND OUTLOOK

- Presented the design constraints and study of the PMQ triplet for use as final focus system for LWFA experiment planned at ARES.
- ✤ The studies for higher beam injection energy for one of the WP are presented.
- ✤ Wide spectrum of WP's (charge, energy) with ARES possible for various experiments.
- The initial results look promising for achieving the strict demands of the LWFA experiment.
- The fine tuning of the requirements of the matched beam parameters can by using the slope of Longitudinal Plasma field profile.
- The tolerance studies will be done for PMQ geometric parameters and alignment.
- The effects of temperature and radiations also needs to be investigated, especially in the case of external injection, when the laser is propagating with the electron beam through the PMQ's.
- Effects of CSR and wake fields (beam passing through the mirror) will also be taken into account.

References

[1] E. N. Svystun et al, in Proc. 10th Int. Particle Accelerator Conf. (IPAC'19), Melbourne, Australia, May 2019, THPGW023. [2] J. K. Lim et. al, Phys. Rev. STAB 8, 072401, 2005.

[3] F. H. O, G. Andonian, and J. B. Rosenzweig, in Proc. 1st Int. Particle Accelerator Conf. (IPAC'10), Kyoto, Japan, May 2010, paper WEPE077.

67.21/114.79

 $\sigma_{\rm x}/\sigma_{\rm y}~(\mu m)$

0.97/1.0

z [mm]

