

Demonstration of a millimeter-scale electron-beam driven plasma wakefield accelerator based on hybrid staging

<u>Thomas Heinemann</u>, T. Kurz, S. Schöbel, J. P. Couperus Cabadağ, O. Kononenko,
Y.Y. Chang, M. Bussmann, S. Corde, A. Debus, H. Ding, A. Döpp, M.F. Gilljohann,
B. Hidding, S. Karsch, A. Köhler, R. Pausch, O. Zarini, U. Schramm,
A. Martinez de la Ossa, and A. Irman

Introduction

Particle beam-driven wakefield accelerator (PWFA)

- short, high-current electron beam (E ≈ 10¹⁰ V/m)
- favourable for selective ionisation injection
- typically needs large and complex accelerator infrastructure, Unless...

Combine both in a staged setup

Laser-driven wakefield accelerator (LWFA)

- short, high-power laser pulse (E ≈ 10¹³ V/m)
- high ionization rates
- comparably many laser systems available

HELMHOLTZ ZENTRUM EAAC 2019 thomas.heinemann@strath.ac.uk

Hybrid staging concept – energy and brightness transformer

DESY.

LWFA stage

- provides PWFA driver
- optimised to generate high-current beams
- beam quality is of secondary concern
- sizable energy spread even beneficial (more stable)
- produces intrinsically short beams (~20 fs)
- ideal drive beams for high-density PWFA

PWFA stage

- either pre-ionised by a laser
- or ionised by the space-charge field of the LWFA beam
- enables selective, driver-decoupled, controlled ionization injection (via wakefield or injection laser)
- dephasing-free acceleration
- persistent beam loading conditions
- ultimately serves as **energy** and **quality transformer**

harness individual benefits of both schemes in a compact setup, complementary R&D approach to RF-based PWFA systems, promising prospects for high-brightness beam generation

Hybrid staging concept – energy and brightness transformer

no vacuum gap between stages

harness individual benefits of both schemes in a compact setup, complementary R&D approach to RF-based PWFA systems, promising prospects for high-brightness beam generation

LWFA stage

Generate > 5 kA beams

- self-truncated ionisation injection
- generates quasi-monoenergetic peaks

LWFA stage

Strathc Glasgow

DESY.

When adding the laser blocker (12.5 µm steel foil)

- the charge, energy and energy spread are conserved
- the beam divergence increases, but does not compromise its capability to drive a wakefield

Hybrid staging results

Self-ionised PWFA

Strathcl Glasgow

- LWFA beam ionises plasma, drives plasma wave
- only fraction of the driver contributes to wakefield formation
- · comparably weak wakefield amplitude
- drive beam degradation observed on spectrometer
- together with witness beam signatures

DESY.

Hybrid staging results

Pre-ionised PWFA

Strathcl Glasgow

- allows the whole drive beam to form the plasma wave
- consequently leads to larger wakefield amplitude
- and stronger drive beam degradation
- and higher witness beam energies

DESY.

Hybrid staging results

Strathcl Glasgow

Witness energy and driver degradation

- pre-ionisation results in consistently higher witness energies
- conclusive evidence for succesful PWFA operation

Summary & outlook

Hybrid LWFA-PWFA staging

- compact LWFAs can deliver ideal drivers for high-gradient PWFAs
- PWFAs provide dephasing-free, stable wakefields for optimal beamloading
- intrinsic synchronisation of electron and laser beams
- facilitates high-brightness injection schemes such as plasma photocathode
- hybrid staging ultimately serves as **beam energy and quality transfomer**
- can be implemented at typical, widely accessible LWFA facilities

ightarrow complementary approach to RF-based PWFA systems

Experimental results so far

- observation of driver degradation
- direct observation of beam-driven plasma waves
- witness beam acceleration

ightarrow demonstration of miniaturised PWFA driven by LWFA beams

Next steps

- study beam-driven plasma waves in various regimes
- increase witness beam energy
- energy booster for LWFA dual-beams
- controlled internal injection in second stage
- realise beam-brightness transformer

Thank you!

link to preprint

arXiv:1909.06676 [physics.acc-ph]