

### Single-cycle THz signal accompanying laser wake in photo-ionized plasmas and plasma channels

SERGE KALMYKOV



Leidos Inc., Leidos Innovations Center, Albuquerque, New Mexico, USA

ALEXANDER ENGLESBE, JENNIFER ELLE, ANDREAS SCHMITT-SODY

AFRL, High Power Electromagnetics Division, Kirtland AFB, New Mexico, USA

September 19, 2019 – 18:40 – WG6: Theory and simulations – 4<sup>th</sup> EUROPEAN ADVANCED ACCELERATOR CONCEPTS WORKSHOP

### Can a Langmuir wave emit or absorb radiation?

In the uniform plasma – NO. Violation of quasi-neutrality there does not generate a rotational current

Electromagnetic radiation in the medium is driven by the *rotational* current:

Violation of quasi-neutrality generates potential electric field:

From a divergence of the Ampère's Law,

this potential field sets up a purely potential current, equal to the displacement current:

 $\mathbf{j}_{\text{pot}} = -(4\pi)^{-1} \partial \mathbf{E}_{\text{pot}} / \partial t = -(4\pi)^{-1} \nabla (\partial \varphi / \partial t) \qquad \Rightarrow \qquad \nabla \times \mathbf{j}_{\text{pot}} \equiv 0$   $\mathbf{v}_{\text{pot}} = -(4\pi e n_{e0})^{-1} \partial \mathbf{E}_{\text{pot}} / \partial t = -(4\pi e n_{e0})^{-1} \nabla (\partial \varphi / \partial t) \qquad \Rightarrow \qquad \nabla \times \mathbf{v}_{\text{pot}} \equiv 0$ 

In the non-uniform plasma – YES!

**ES!** For instance,  $\mathbf{v}_{pot}$  may contribute to the rotational current:

$$e\nabla(n_{\mathrm{bg}}(\mathbf{r})\mathbf{v}_{\mathrm{pot}}) = e(\nabla n_{\mathrm{bg}}) \times \mathbf{v}_{\mathrm{pot}} \neq \mathbf{0}$$

$$\left(\nabla^2 - c^{-2}\frac{\partial^2}{\partial t^2}\right)\mathbf{B} = -\frac{4\pi}{c}\nabla\times\mathbf{j}$$

$$n_e - n_{e0} = (4\pi e)^{-1} \nabla \cdot \mathbf{E}_{\text{pot}} = (4\pi e)^{-1} \nabla^2 \varphi$$

$$\frac{\partial \nabla \cdot \mathbf{E}}{\partial t} = \nabla \cdot (c \nabla \times \mathbf{B} - 4\pi \mathbf{j})$$

#### AFRL

### Converting optical pulse radiation into low-frequency radiation modes in radially non-uniform plasmas

10

r (μm)

 $n_{\rm bg} = n_{\rm bg}(r_{\perp}), \nabla n_{\rm bg} = \mathbf{e}_r \mathrm{d}n_{\rm bg}/\mathrm{d}r_{\perp}$ 

1. Plasma column created by optical field ionization

At the column boundary, longitudinal oscillations in electron velocity couple to the sharp gradient in density.

2. Pre-formed leaky channel – a plasma string with a density depression on axis, and, possibly, with a direct current flowing along it.

Density profile of a single-mode leaky channel:

$$\frac{n_{\rm bg}}{n_0} \equiv n(r_{\perp}) = \begin{cases} 1 + r_{\perp}^2 / r_{\rm ch}^2, & r_{\perp} \le r_{\rm ch} \\ 0, & r_{\perp} > r_{\rm ch} \end{cases} \qquad r_{\rm ch} = \frac{\omega_{\rm pe0}}{2c} r_0^2$$



### Direct current causes magnetization of plasma channel

External voltage  $E_{dc}$  applied to the plasma channel causes electron drift along the channel – direct current (DC)

$$\mathbf{j}_{\rm dc} = e n_{\rm bg}(r_{\perp}) \mathbf{v}_{\rm dc} = \mathbf{e}_z \sigma_S(r_{\perp}) E_{\rm dc} \approx \mathbf{e}_z \sigma_S(0) E_{\rm dc}$$

$$v_{\rm dc} \ll v_{Te} = 2.45 \times 10^{-3} c \sqrt{T_e[eV]}, \qquad E_{\rm dc} < E_D = 5.6 \times 10^{-12} \frac{n_0[{\rm cm}^{-3}]}{T_e[eV]} \frac{\lambda_{ei}Z}{\gamma(Z)} \left(\frac{{\rm V}}{{\rm m}}\right) \longrightarrow \begin{array}{l} \text{no runaway} \\ \text{electrons} \end{array}$$

Electrons streaming along the channel generate radially non-uniform, constant azimuthal magnetic field:

$$\mathbf{B}_{\rm dc}(r_{\perp} \le r_{\rm ch}) \approx \mathbf{e}_{\phi} B_{\rm dc}^{\rm max} \frac{r_{\perp}}{r_{\rm ch}} = \mathbf{e}_{\phi} \alpha E_{\rm dc} \frac{r_{\perp}}{r_{\rm ch}},$$

$$\alpha = 2\pi\sigma_{S}(0) r_{ch}/c$$
  

$$B_{dc}^{max} < \alpha E_{D} \approx 10^{-11} n_{0} [cm^{-3}] T_{e}^{1/2} [eV] r_{ch} [\mu m] (V/m)$$

The limiting value of magnetic field is usually much lower than the cold wave-breaking field of the plasma wave

Both electron drift velocity and static magnetic field generate rotational current,

- $\mathbf{v}_{dc}$  through coupling to the density perturbations in the laser wake
- **B**<sub>dc</sub> through changing vorticity

### First-order rotational fields and currents in non-uniform plasma

Electromagnetic radiation (e.g. that of the laser pulse) is driven in the plasma by a rotational current :

$$\left(\nabla^2 - c^{-2}\frac{\partial^2}{\partial t^2}\right)\mathbf{B}_1 = -\frac{4\pi}{c}\nabla \times \mathbf{j} = -4\pi e\nabla \times (n_{\rm bg}\mathbf{a})$$

$$\mathbf{a} = \mathbf{v}_{\rm rot}^{(1)} / c \sim \mathcal{O}(\mathbf{E}_1) \sim \mathcal{O}(\mathbf{B}_1)$$

Conservation of the 1<sup>st</sup> – order vorticity expresses rotational velocity through the laser magnetic field:

$$\varepsilon = 1 - \omega_{\rm pe}^2(\mathbf{r}) / \omega^2 = 1 - n_{\rm bg}(\mathbf{r}) / n_c(\omega)$$

THE AIR FORCE RESEARCH LABORATORY \_\_\_\_\_

### Driving second-order perturbations of velocity

First-order electric field and rotational velocity in the under-dense plasma: Gaussian optical pulse

$$\begin{split} \mathbf{E}_{1}(t,r_{\perp},z) &= \mathbf{e}_{x}E_{0}(r_{0}/\tilde{r}_{0})\mathrm{e}^{-(r_{\perp}/\tilde{r}_{0})^{2}}\mathrm{e}^{-\xi^{2}/(2L)^{2}}\cos[k_{0}z - \omega_{0}t + \Psi(r_{\perp},z)] & \xi = z - v_{g0}t = z - \sqrt{\varepsilon_{L}}ct \\ \mathbf{v}_{1}(t,r_{\perp},z) &= -\mathbf{e}_{x}ca\sin[k_{0}z - \omega_{0}t + \Psi(r_{\perp},z)] & \varepsilon_{L} = 1 - \left(\omega_{\mathrm{pe0}}/\omega_{0}\right)^{2} \lesssim 1 \\ a(t,r_{\perp},z) &= a_{0}(r_{0}/\tilde{r}_{0})\mathrm{e}^{-(r_{\perp}/\tilde{r}_{0})^{2}}\mathrm{e}^{-\xi^{2}/(2L)^{2}} & \nabla = \left(\partial/\partial\xi, \partial/\partial r_{\perp}\right) \\ z = 0: & a(t,r_{\perp}) = a_{0}\mathrm{e}^{-(r_{\perp}/r_{0})^{2}}\mathrm{e}^{-\xi^{2}/(2L)^{2}} \end{split}$$

The pulse ponderomotive force (~  $O(a^2)$ ) generates a  $2^{nd}$  – order current,  $\mathbf{j}_2 = en_{bg}\mathbf{v}_2 + en_{bg}(\mathbf{v}_{dc}\delta n) \sim O(a^2)$ The velocity splits into two parts,  $\mathbf{v}_2 = \mathbf{v}_S + \mathbf{v}_B$ , the first driving the magnetic field, the second being driven by it:

$$\hat{\mathcal{L}}\mathbf{v}_{S} = (\sqrt{\varepsilon_{L}} c/4) \nabla (\partial a^{2}/\partial \xi) \qquad \qquad \hat{\mathcal{L}}\mathbf{v}_{B} = [e/(m_{e}c)] \nabla \times \mathbf{B}_{2} \qquad \qquad \hat{\mathcal{L}} = \varepsilon_{L} (\partial/\partial \xi - \mu(r_{\perp}))^{2} + k_{p}^{2}(r_{\perp})$$

$$\mathbf{v}_{S} \text{ is not potential at all:} \qquad \varepsilon_{L} \partial^{2}/\partial \xi^{2} \nabla \times \mathbf{v}_{S} = -[e/(m_{e}c)] \mathbf{S}_{1}, \qquad \qquad \mathbf{S}_{1} = (4\pi e/c) (\nabla n_{bg}) \times \mathbf{v}_{S}$$

$$\mathbf{v}_{S} \text{ is the main contributor to the source of magnetic field}$$

In fact,  $S_1(\xi, r_{\perp})$  is the main contributor to the source of magnetic field

### Forced wave equation for the wake magnetic field

Magnetization of the background plasma by DC alters  $2^{nd}$  – order vorticity, adding component  $S_2$  to the source

$$\mathbf{W}_2 = c^{-1} \nabla \times \mathbf{B}_2 + \frac{e}{m_e c^2} (\mathbf{B}_2 - \delta n \mathbf{B}_{\mathrm{dc}}) \equiv \mathbf{0}$$

All source terms have azimuthal polarization  $\Rightarrow$  **B**<sub>2</sub> = **e**<sub> $\phi$ </sub> B<sub>2 $\phi$ </sub>

$$\left(\nabla_{\phi}^{2} - \hat{\mathcal{L}}\right)B_{2\phi} - \frac{4\pi e}{c}\left(\frac{\mathrm{d}n_{\mathrm{bg}}}{\mathrm{d}r_{\perp}}\mathbf{v}_{Bz}\right) = \frac{\frac{S_{1}}{4\pi e}\left(\frac{\mathrm{d}n_{\mathrm{bg}}}{\mathrm{d}r_{\perp}}\mathbf{v}_{Sz}\right)}{c} - S_{2} - S_{3}$$

The form of sources S<sub>2</sub> and S<sub>3</sub> holds in a wide channel,  $(k_{p0}r_{ch})^{1/2} \sim k_{p0}r_0 \gg 1$  in the absence of runaway electrons,

B

$$C_{\rm dc} \ll \alpha E_D \ll E_{\rm br}$$

In a wide channel,  $\mathbf{S}_1$  is almost always dominant

 $S_2$  becomes comparable with  $S_1$  if a channel is sufficiently wide,

$$k_{p0}r_{\rm ch} > (v_{\rm dc}/c)^{-1/2} > 20T_e^{-1/4}[eV]$$

and  $S_3$  is always a small correction

$$S_{2} = k_{p}^{2}(r_{\perp})B_{dc}\delta n \longrightarrow$$
  

$$S_{3} = -\frac{4\pi}{c}j_{dc}\frac{\partial\delta n}{\partial r_{\perp}} \longrightarrow$$

Modification of 2<sup>nd</sup> – order vorticity

 Coupling DC to the radial gradient of density perturbation in the wake

Equation for electron density perturbation in the non-uniform plasma, cf. N. E. Andreev *et al.*, Phys. Plasmas **4**, 1145-53 (1997)

## Electron oscillations at the border of plasma column produced by photo-ionization: Cylindrical PIC simulations

Parameters of the plasma and Gaussian drive pulse:

 $\lambda_0 = 0.8 \,\mu\text{m} \,(\text{carrier frequency } \omega_0 = 2\pi c / \lambda_0 = 2.356 \times 10^{15} \,\text{s}^{-1})$   $a_0 = 0.5 \,(\text{peak intensity } 5.4 \times 10^{17} \,\text{W/cm}^2)$   $n_{e0} = 7 \times 10^{17} \,\text{cm}^{-3} \,[\text{gas : heluim (fully stripped), argon (8 shells stripped)]}$   $r_0 = 9.5 \,\mu\text{m} \,(k_{p0}r_0 = 1.5)$  $L = 6.36 \,\mu\text{m} \,(\text{FWHM in intensity } \tau_L = \sqrt{8 \ln 2} \,L/c = 50 \,\text{fs})$ 

Simulation code:

AFRL

WAKE – P. Mora & T. M. Antonsen Jr., Phys. Plasmas **4**, 217 (1997)

(quasi-static PIC, ponderomotive particle push, cylindrical symmetry, extended paraxial solver for the pulse, OFI – Keldysh model)

Laser wake in the vicinity of the focal plane



## Phase mixing and damping of electron plasma wave in the column boundary layer

Tracking WAKE macro-particles yields the decrement of electron velocity oscillations as a function of radius. Linear analytic solution with this phenomenological decrement (black) agrees with the PIC simulation fairly well.



# Analytical map of longitudinal electron velocity and localization of the source of rotational fields

- The source is concentrated in the column boundary layer (the shell is ~ 2  $\mu$ m-thick for He, ~ 8  $\mu$ m-thick for Ar)
- Velocities contributing to the source are lower than  $2 \times 10^{-3} c$



AFRL

### Calculating EM signal supported by the plasma wake

Recalling the model equations:

$$\left( \nabla_{\phi}^{2} - \hat{L} \right) B_{2\phi} - \frac{4\pi e}{c} \left( \frac{\mathrm{d}n_{\mathrm{bg}}}{\mathrm{d}r_{\perp}} \mathbf{v}_{Bz} \right) = \frac{4\pi e}{c} \left( \frac{\mathrm{d}n_{\mathrm{bg}}}{\mathrm{d}r_{\perp}} \mathbf{v}_{Sz} \right)$$

$$\hat{\mathcal{L}} \mathbf{v}_{Bz} = \left[ e/(m_{e}c) \right] r_{\perp}^{-1} \partial \left( r_{\perp} B_{2\phi} \right) / \partial r_{\perp}$$

$$\hat{\mathcal{L}} \mathbf{v}_{Sz} = \left( \sqrt{\varepsilon_{L}} c/4 \right) \partial^{2} a^{2} / \partial \xi^{2}$$

$$\hat{\mathcal{L}} = \varepsilon_{L} \left( \partial / \partial \xi - \mu(r_{\perp}) \right)^{2} + k_{\mathrm{p}}^{2}(r_{\perp})$$

Local decrement empirically derived from WAKE simulations:

$$\mu(r_{\perp}) = \mu_0 \big( \mathrm{d}n_{\mathrm{bg}}/\mathrm{d}r_{\perp} \big) \big( \max \big( \mathrm{d}n_{\mathrm{bg}}/\mathrm{d}r_{\perp} \big) \big)^{-1}$$

$$\mu_0 = k_{p0}/(10\pi)$$
 – helium  
 $\mu_0 = k_{p0}/(20\pi)$  – argon

Normalizing all lengths to  $k_{p0}^{-1} = c/\omega_{pe0}$ , wave numbers to  $k_{p0}$ , and passing into Fourier domain,

$$B_{2\phi}^{k}(r_{\perp}) = \frac{e}{m_{e} c \,\omega_{\text{pe0}}} \int B_{2\phi}(\xi, r_{\perp}) e^{ik\xi} d\xi$$

yields equations for Fourier images of the azimuthal magnetic and longitudinal & radial electric fields

Bi-Gaussian pulse in time and Fourier domain:

$$a^{2}(\xi, r_{\perp}) = a_{0}^{2} e^{-2(r_{\perp}/r_{0})^{2}} e^{-\xi^{2}/2L^{2}}$$
$$a_{k}^{2}(r_{\perp}) = \sqrt{2\pi}a_{0}^{2}L e^{-(kL)^{2}/2} e^{-2(r_{\perp}/r_{0})^{2}}$$

### Fourier components of the EM signal inside the plasma

$$\left(\frac{\mathrm{d}}{\mathrm{d}r_{\perp}} + \frac{\mathrm{d}n/\mathrm{d}r_{\perp}}{k^{2}\boldsymbol{\varepsilon_{k}}\boldsymbol{\varepsilon}_{L}}\right)\frac{1}{r_{\perp}}\frac{\mathrm{d}}{\mathrm{d}r_{\perp}}\left(r_{\perp}B_{2\phi}^{k}\right) - k^{2}(1-\boldsymbol{\varepsilon_{k}}\boldsymbol{\varepsilon}_{L})B_{2\phi}^{k} = \frac{\mathrm{d}n/\mathrm{d}r_{\perp}}{4\boldsymbol{\varepsilon_{k}}\sqrt{\boldsymbol{\varepsilon}_{L}}}a_{k}^{2}$$

$$E_{2r}^{k} = \frac{1}{k^{2} \varepsilon_{k} \varepsilon_{L}} \left[ \sqrt{\varepsilon_{L}} (1 + i \mu/k)^{2} B_{2\phi}^{k} + (r_{\perp}/r_{0}^{2}) n(r_{\perp}) a_{k}^{2} \right]$$
$$E_{2z}^{k} = \frac{i}{k \varepsilon_{k} \varepsilon_{L}} \left[ \sqrt{\varepsilon_{L}} (1 + i \mu/k)^{2} \frac{1}{r_{\perp}} \frac{d}{dr_{\perp}} (r_{\perp} B_{2\phi}^{k}) - \frac{1}{4} n(r_{\perp}) a_{k}^{2} \right]$$

These are the images of ponderomotively driven currents

They vanish in the plasma-free area

Electric field in the plasma-free area is purely rotational

Dielectric function with local attenuation:

$$\varepsilon_k = [1 + i \mu(r_{\perp})/k]^2 - n(r_{\perp})/(\varepsilon_L k^2)$$
  $n(r_{\perp}) = n_{\text{bg}}(r_{\perp})/n_{e0}$ 

For any k from the band  $0 < k < \varepsilon_L^{-1/2}$  there exists a critical surface  $r_\perp = R_{\rm cr}$  where  $\varepsilon_k(0, R_{\rm cr}) = 0$ 

Thus the task at hand is transformation of the potential field of a Langmuir oscillation into an electromagnetic vacuum eigenmode

1

### Fourier components of the EM signal in plasma-free area

Inside the plasma, the solution must be proportional to the source. Magnetic field and its derivative vanish on axis:

$$B_{2\phi}^{k}(r_{\perp}=0) = \frac{\mathrm{d}B_{2\phi}^{k}}{\mathrm{d}r_{\perp}}(r_{\perp}=0) = 0$$

The bounded at infinity asymptotic is evanescent (not surprisingly, as the source is subluminal):

$$B_{2\phi}^{k}(r_{\perp} \to \infty) = CK_{1}\left(kr_{\perp}\sqrt{1-\varepsilon_{L}}\right) \xrightarrow{\text{'far field zone'}}_{r_{\perp} > k^{-1}(1-\varepsilon_{L})^{-1/2}} \sqrt{\frac{\pi}{2kr_{\perp}\sqrt{1-\varepsilon_{L}}}} e^{-kr_{\perp}\sqrt{1-\varepsilon_{L}}}$$
$$\frac{\mathrm{d}B_{2\phi}^{k}}{\mathrm{d}r_{\perp}}(r_{\perp} \to \infty) = -\frac{C}{2}k_{\perp}\sqrt{1-\varepsilon_{L}}\left[K_{0}\left(kr_{\perp}\sqrt{1-\varepsilon_{L}}\right) + K_{2}\left(kr_{\perp}\sqrt{1-\varepsilon_{L}}\right)\right]$$

The `in' and `out' solutions are matched (eliminating the complex constant C) at the critical surface

#### Fourier images of the fields near the column surface

• Fourier images of radial electric field and the source spike at the critical surface

• The lack of attenuation would turn these peaks into singularities

 Magnetic field has no anomaly at the critical surface

• Fields slowly decay towards plasma-free space

•Magnetic field and rotational part of electric field sharply fall off towards axis



#### AFRL

### Field in the far-field zone: Formation of single-cycle THz pulse

Far-field zone – fields are exponentially evanescent.



- High-frequency components
   decay rapidly
- The spectrum becomes narrower, it's peak shifting towards 1 THz
- The signal length reduces to a single cycle
- Signal becomes radially polarized
- The peak-to-peak signal voltage exceeds a few 100's V/m





#### Important observations and conclusions

- Surface of the plasma column, created by OFI of the neutral gas, supports an azimuthally polarized rotational current – a source of high-amplitude EM THz pulse following in the wake of the optical drive pulse
- The rotational current, localized in a μm-thin cylindrical shell, is produced by coupling the longitudinal electron velocity in the plasma wake to the radial gradient of electron density in the ionization front
- The THz signal is evanescent in the radial direction, as dictated by the sub-luminal wake phase velocity
- Faster decay of the higher-frequency components shifts the signal spectrum to 1 THz as the observer moves further away from the column
- At a mm-scale distance from the column surface (100's of the column radii) the THz signal turns into a singlecycle burst, with a peak-to-peak signal voltage on a kV/m level.
- This THz pulse may be captured by electro-optical methods, already used in diagnostics of femtosecond electron beams [A. Curcio, F. Bisesto *et al.*, Phys. Rev. Appl. **9**, 024004 (2018)]

Acknowledgement: The work is supported by the AFRL through contract FA9451-17-F-0011, and by AFOSR grants FA9550-16RDCOR325, FA9550-19RDCOR023, and FA9550-19RDCOR027



### Questions?

THE AIR FORCE RESEARCH LABORATORY

Distribution A: Approved for public release. Distribution unlimited AFMC-2019-0560