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Can a Langmuir wave emit or absorb radiation?
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In the uniform plasma – NO.        Violation of quasi-neutrality there does not generate a rotational current

Electromagnetic radiation in the medium is driven by the rotational current:

From a divergence of the Ampère’s Law,

𝐣𝐣pot = − 4𝜋𝜋 −1 ⁄𝜕𝜕𝐄𝐄pot 𝜕𝜕𝜕𝜕 = − 4𝜋𝜋 −1∇ ⁄𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 ⇒ 𝛻𝛻 × 𝐣𝐣pot ≡ 0
𝐯𝐯pot = − 4𝜋𝜋𝑒𝑒𝑛𝑛𝑒𝑒𝑒 −1 ⁄𝜕𝜕𝐄𝐄pot 𝜕𝜕𝜕𝜕 = − 4𝜋𝜋𝑒𝑒𝑛𝑛𝑒𝑒𝑒 −1∇ ⁄𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 ⇒ 𝛻𝛻 × 𝐯𝐯pot ≡ 0

∇2 − 𝑐𝑐−2
𝜕𝜕2

𝜕𝜕𝜕𝜕2 𝐁𝐁 = −
4𝜋𝜋
𝑐𝑐
𝛻𝛻 × 𝐣𝐣

this potential field sets up a purely potential current, equal to the displacement current:

𝜕𝜕∇ � 𝐄𝐄
𝜕𝜕𝜕𝜕 = ∇ � 𝑐𝑐∇ × 𝐁𝐁 − 4𝜋𝜋𝐣𝐣

Violation of quasi-neutrality generates potential electric field: 𝑛𝑛𝑒𝑒 − 𝑛𝑛𝑒𝑒𝑒 = 4𝜋𝜋𝑒𝑒 −1∇ � 𝐄𝐄pot = 4𝜋𝜋𝑒𝑒 −1∇2𝜕𝜕

No contribution to 
the radiation source

In the non-uniform plasma – YES!        For instance, vpot may contribute to the rotational current:

𝑒𝑒∇ 𝑛𝑛bg 𝐫𝐫 𝐯𝐯pot = 𝑒𝑒 ∇𝑛𝑛bg × 𝐯𝐯pot ≠ 𝟎𝟎



Converting optical pulse radiation into low-frequency 
radiation modes in radially non-uniform plasmas 
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1. Plasma column created by optical field ionization.

At the column boundary, longitudinal oscillations       
in electron velocity couple to the sharp gradient        
in density.

2. Pre-formed leaky channel – a plasma string         
with a density depression on axis, and,                               
possibly, with a direct current flowing along it.

Density profile of a single-mode leaky channel:  
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Electron trajectories making 
up the rotational current

vg

𝑒𝑒 ∇𝑛𝑛bg × 𝐯𝐯pot ≠ 𝟎𝟎

𝑒𝑒 ∇𝑛𝑛bg × 𝐯𝐯pot ≠ 𝟎𝟎

n bg = n bg(r⊥), ∇n bg = er dn bg/dr⊥

𝑟𝑟ch =
𝜔𝜔pe𝑒
2𝑐𝑐 𝑟𝑟𝑒2
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Direct current causes magnetization of plasma channel

Both electron drift velocity and static magnetic field generate rotational current,

• vdc through coupling to the density perturbations in the laser wake

• Bdc through changing vorticity

The limiting value of magnetic field is usually much lower than the cold wave-breaking field of the plasma wave

External voltage Edc applied to the plasma channel causes electron drift along the channel – direct current (DC)

𝑣𝑣dc ≪ 𝑣𝑣𝑇𝑇𝑒𝑒 = 2.45 × 10−3𝑐𝑐 𝑇𝑇𝑒𝑒 eV , 𝐸𝐸dc < 𝐸𝐸𝐷𝐷 = 5.6 × 10−12
𝑛𝑛𝑒 cm−3

𝑇𝑇𝑒𝑒 eV
𝜆𝜆𝑒𝑒𝑒𝑒𝑍𝑍
𝛾𝛾 𝑍𝑍

V
m

𝐣𝐣dc = 𝑒𝑒𝑛𝑛bg 𝑟𝑟⊥ 𝐯𝐯dc = 𝐞𝐞𝑧𝑧𝜎𝜎𝑆𝑆 𝑟𝑟⊥ 𝐸𝐸dc ≈ 𝐞𝐞𝑧𝑧𝜎𝜎𝑆𝑆 0 𝐸𝐸dc

Electrons streaming along the channel generate radially non-uniform, constant azimuthal magnetic field:

𝐁𝐁dc 𝑟𝑟⊥ ≤ 𝑟𝑟ch ≈ 𝐞𝐞𝜙𝜙𝐵𝐵dc
max 𝑟𝑟⊥

𝑟𝑟ch
= 𝐞𝐞𝜙𝜙𝛼𝛼𝐸𝐸dc

𝑟𝑟⊥
𝑟𝑟ch

, 𝛼𝛼 = 2𝜋𝜋𝜎𝜎𝑆𝑆(0) ⁄𝑟𝑟ch 𝑐𝑐

𝐵𝐵dc
max < 𝛼𝛼𝐸𝐸𝐷𝐷 ≈ 10−11𝑛𝑛𝑒 cm−3 𝑇𝑇𝑒𝑒

1/2 eV 𝑟𝑟ch 𝜇𝜇m ⁄V m

no runaway   
electrons



First-order rotational fields and currents in non-uniform plasma
Electromagnetic radiation (e.g. that of the laser pulse) is driven in the plasma by a rotational current :
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Conservation of the 1st – order vorticity expresses rotational velocity through the laser magnetic field:
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NB: Presence in the plasma of the DC does not alter 
the 1st – order vorticity as long as the plasma is 
transparent, ω >> ω pe

∇2 − 𝑐𝑐−2
𝜕𝜕2

𝜕𝜕𝜕𝜕2 𝐁𝐁1 = −
4𝜋𝜋
𝑐𝑐
∇ × 𝐣𝐣 = −4𝜋𝜋𝑒𝑒∇ × 𝑛𝑛bg𝐚𝐚

∇2 − 𝑐𝑐−2
𝜕𝜕2

𝜕𝜕𝜕𝜕2 + 𝜔𝜔pe2 𝐫𝐫 𝐁𝐁1 = −4𝜋𝜋𝑒𝑒 ∇𝑛𝑛bg × 𝐚𝐚

𝐚𝐚 = ⁄𝐯𝐯rot
(1) 𝑐𝑐~𝑂𝑂 𝐄𝐄1 ~𝑂𝑂 𝐁𝐁1
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z = 0:

𝐄𝐄1 𝜕𝜕, 𝑟𝑟⊥, 𝑧𝑧 = 𝐞𝐞𝑥𝑥𝐸𝐸𝑒 ⁄𝑟𝑟𝑒 �̃�𝑟𝑒 e− ⁄𝑟𝑟⊥ �𝑟𝑟0 2e− ⁄𝜉𝜉2 2𝐿𝐿 2 cos 𝑘𝑘𝑒𝑧𝑧 − 𝜔𝜔𝑒𝜕𝜕 + Ψ 𝑟𝑟⊥, 𝑧𝑧
𝐯𝐯1 𝜕𝜕, 𝑟𝑟⊥, 𝑧𝑧 = −𝐞𝐞𝑥𝑥𝑐𝑐𝑐𝑐 sin 𝑘𝑘𝑒𝑧𝑧 − 𝜔𝜔𝑒𝜕𝜕 + Ψ 𝑟𝑟⊥, 𝑧𝑧
𝑐𝑐 𝜕𝜕, 𝑟𝑟⊥, 𝑧𝑧 = 𝑐𝑐𝑒 ⁄𝑟𝑟𝑒 �̃�𝑟𝑒 e− ⁄𝑟𝑟⊥ �𝑟𝑟0 2e− ⁄𝜉𝜉2 2𝐿𝐿 2

The pulse ponderomotive force (~ O (a 2)) generates a 2nd – order current,  j2 = enbgv2 + enbg(vdcδn) ~ O (a2)

The velocity splits into two parts, v2 = vS + vB , the first driving the magnetic field, the second being driven by it:

𝑐𝑐 𝜕𝜕, 𝑟𝑟⊥ = 𝑐𝑐𝑒e− ⁄𝑟𝑟⊥ 𝑟𝑟0 2e− ⁄𝜉𝜉2 2𝐿𝐿 2

First-order electric field and rotational velocity in the under-dense plasma: Gaussian optical pulse

Driving second-order perturbations of velocity

𝜉𝜉 = 𝑧𝑧 − 𝑣𝑣g𝑒𝜕𝜕 = 𝑧𝑧 − 𝜀𝜀𝐿𝐿𝑐𝑐𝜕𝜕
𝜀𝜀𝐿𝐿 = 1 − ⁄𝜔𝜔pe𝑒 𝜔𝜔𝑒

2 ≲ 1

ℒ̂𝐯𝐯𝑆𝑆 = 𝜀𝜀𝐿𝐿 ⁄𝑐𝑐 4 ∇ ⁄𝜕𝜕𝑐𝑐2 𝜕𝜕𝜉𝜉 ℒ̂𝐯𝐯𝐵𝐵 = ⁄𝑒𝑒 𝑚𝑚𝑒𝑒𝑐𝑐 ∇ × 𝐁𝐁2 ℒ̂ = 𝜀𝜀𝐿𝐿 ⁄𝜕𝜕 𝜕𝜕𝜉𝜉 − 𝜇𝜇 𝑟𝑟⊥
2 + 𝑘𝑘p2 𝑟𝑟⊥

vS is not potential at all: ⁄𝜀𝜀𝐿𝐿𝜕𝜕2 𝜕𝜕𝜉𝜉2 ∇ × 𝐯𝐯𝑆𝑆 = − ⁄𝑒𝑒 𝑚𝑚𝑒𝑒𝑐𝑐 𝐒𝐒1, 𝐒𝐒1 = ⁄4𝜋𝜋𝑒𝑒 𝑐𝑐 ∇𝑛𝑛bg × 𝐯𝐯𝑆𝑆

In fact, S1(ξ, r⊥) is the main contributor to the source of magnetic field

∇= ⁄𝜕𝜕 𝜕𝜕𝜉𝜉 , ⁄𝜕𝜕 𝜕𝜕𝑟𝑟⊥
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Equation for electron density perturbation in the non-uniform 
plasma, cf. N. E. Andreev et al., Phys. Plasmas 4, 1145-53 (1997)

Forced wave equation for the wake magnetic field
Magnetization of the background plasma by DC alters 
2nd – order vorticity, adding component S2 to the source 𝐖𝐖2 = 𝑐𝑐−1∇ × 𝐁𝐁2 +

𝑒𝑒
𝑚𝑚𝑒𝑒𝑐𝑐2

𝐁𝐁2 − 𝛿𝛿𝑛𝑛𝐁𝐁dc ≡ 𝟎𝟎

∇𝜙𝜙2 − ℒ̂ 𝐵𝐵2𝜙𝜙 −
4𝜋𝜋𝑒𝑒
𝑐𝑐

d𝑛𝑛bg
d𝑟𝑟⊥

v𝐵𝐵𝑧𝑧 =
4𝜋𝜋𝑒𝑒
𝑐𝑐

d𝑛𝑛bg
d𝑟𝑟⊥

v𝑆𝑆𝑧𝑧

𝐒𝐒1

− S𝟐𝟐 − S𝟑𝟑

𝑆𝑆2 = 𝑘𝑘p2 𝑟𝑟⊥ 𝐵𝐵dc𝛿𝛿𝑛𝑛

𝑆𝑆3 = −
4𝜋𝜋
𝑐𝑐 𝑗𝑗dc

𝜕𝜕𝛿𝛿𝑛𝑛
𝜕𝜕𝑟𝑟⊥

All source terms have azimuthal polarization     ⇒ 𝐁𝐁2 = 𝐞𝐞𝜙𝜙𝐵𝐵2𝜙𝜙

Modification of 2nd – order vorticity

Coupling DC to the radial gradient 
of density perturbation in the wake

In a wide channel, S1 is almost always 
dominant

S2 becomes comparable with S1 if a 
channel is sufficiently wide, 

and S3 is always a small correction

( ) ]eV[20 4121
dcch0

−− >> ep Tcvrk

𝑘𝑘p𝑒𝑟𝑟ch
⁄1 2~ 𝑘𝑘p𝑒𝑟𝑟𝑒 ≫ 1

The form of sources S2 and S3 holds in a 
wide channel, 

in the absence of runaway electrons, 

𝐵𝐵dc ≪ 𝛼𝛼𝐸𝐸𝐷𝐷 ≪ 𝐸𝐸br
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Electron oscillations at the border of plasma column 
produced by photo-ionization: Cylindrical PIC simulations  
Parameters of the plasma and Gaussian drive pulse:
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Laser wake in the vicinity of the focal plane

Simulation code:

WAKE – P. Mora & T. M. Antonsen Jr., Phys. 
Plasmas 4, 217 (1997)

(quasi-static PIC, ponderomotive particle push, 
cylindrical symmetry, extended paraxial solver for 
the pulse, OFI – Keldysh model)



Phase mixing and damping of electron plasma wave in the 
column boundary layer
Tracking WAKE macro-particles yields the decrement of electron velocity oscillations as a function of radius.
Linear analytic solution with this phenomenological decrement (black) agrees with the PIC simulation fairly well. 
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Analytical map of longitudinal electron velocity and 
localization of the source of rotational fields
• The source is concentrated in the column boundary layer (the shell is ~ 2 µm-thick for He, ~ 8 µm-thick for Ar) 

• Velocities contributing to the source are lower than 2×10-3c
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This source can produce a detectable EM signal
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A
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Calculating EM signal supported by the plasma wake

Recalling the model equations:
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Normalizing all lengths to kp0
-1 = c/ωpe0, wave numbers 

to kp0, and passing into Fourier domain, 

( ) ( )∫ ⊥⊥ = ξξ
ω

ξ
φφ de , i

2
pe0

2
k

e

k rB
cm
erB

∇𝜙𝜙2 − ℒ̂ 𝐵𝐵2𝜙𝜙 −
4𝜋𝜋𝑒𝑒
𝑐𝑐

d𝑛𝑛bg
d𝑟𝑟⊥

v𝐵𝐵𝑧𝑧 =
4𝜋𝜋𝑒𝑒
𝑐𝑐

d𝑛𝑛bg
d𝑟𝑟⊥

v𝑆𝑆𝑧𝑧

ℒ̂𝑣𝑣𝑆𝑆𝑧𝑧 = 𝜀𝜀𝐿𝐿 ⁄𝑐𝑐 4 ⁄𝜕𝜕2𝑐𝑐2 𝜕𝜕𝜉𝜉2

ℒ̂𝑣𝑣𝐵𝐵𝑧𝑧 = ⁄𝑒𝑒 𝑚𝑚𝑒𝑒𝑐𝑐 𝑟𝑟⊥−1 ⁄𝜕𝜕 𝑟𝑟⊥𝐵𝐵2𝜙𝜙 𝜕𝜕𝑟𝑟⊥

ℒ̂ = 𝜀𝜀𝐿𝐿 ⁄𝜕𝜕 𝜕𝜕𝜉𝜉 − 𝜇𝜇 𝑟𝑟⊥
2 + 𝑘𝑘p2 𝑟𝑟⊥

𝜇𝜇 𝑟𝑟⊥ = 𝜇𝜇𝑒 ⁄d𝑛𝑛bg d𝑟𝑟⊥ max ⁄d𝑛𝑛bg d𝑟𝑟⊥
−1

𝜇𝜇𝑒 = ⁄𝑘𝑘p𝑒 10𝜋𝜋 − helium
𝜇𝜇𝑒 = ⁄𝑘𝑘p𝑒 20𝜋𝜋 − argon

𝑐𝑐2 𝜉𝜉, 𝑟𝑟⊥ = 𝑐𝑐𝑒2e−2 ⁄𝑟𝑟⊥ 𝑟𝑟0 2e− ⁄𝜉𝜉2 2𝐿𝐿2

𝑐𝑐𝑘𝑘2 𝑟𝑟⊥ = 2𝜋𝜋𝑐𝑐𝑒2𝐿𝐿e− ⁄𝑘𝑘𝐿𝐿 2 2e−2 ⁄𝑟𝑟⊥ 𝑟𝑟0 2

yields equations for Fourier images of the azimuthal 
magnetic and longitudinal & radial electric fields

Local decrement empirically derived from WAKE 
simulations:

Bi-Gaussian pulse in time and Fourier domain:



Fourier components of the EM signal inside the plasma 
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Dielectric function with local attenuation:

For any k from the band 0 < k < εL
-1/2 there exists a critical surface r⊥ = Rcr where εk (0,Rcr) = 0

Thus the task at hand is transformation of the potential field of a Langmuir oscillation into an electromagnetic 
vacuum eigenmode

d
d𝑟𝑟⊥

+
⁄d𝑛𝑛 d𝑟𝑟⊥

𝑘𝑘2𝜀𝜀𝑘𝑘𝜀𝜀𝐿𝐿
1
𝑟𝑟⊥

d
d𝑟𝑟⊥

𝑟𝑟⊥𝐵𝐵2𝜙𝜙𝑘𝑘 − 𝑘𝑘2 1 − 𝜀𝜀𝑘𝑘𝜀𝜀𝐿𝐿 𝐵𝐵2𝜙𝜙𝑘𝑘 =
⁄d𝑛𝑛 d𝑟𝑟⊥

4𝜀𝜀𝑘𝑘 𝜀𝜀𝐿𝐿
𝑐𝑐𝑘𝑘2

𝐸𝐸2𝑟𝑟𝑘𝑘 =
1

𝑘𝑘2𝜀𝜀𝑘𝑘𝜀𝜀𝐿𝐿
𝜀𝜀𝐿𝐿 1 + i ⁄𝜇𝜇 𝑘𝑘 2𝐵𝐵2𝜙𝜙𝑘𝑘 + ⁄𝑟𝑟⊥ 𝑟𝑟𝑒2 𝑛𝑛 𝑟𝑟⊥ 𝑐𝑐𝑘𝑘2

𝐸𝐸2𝑧𝑧𝑘𝑘 =
i

𝑘𝑘𝜀𝜀𝑘𝑘𝜀𝜀𝐿𝐿
𝜀𝜀𝐿𝐿 1 + i ⁄𝜇𝜇 𝑘𝑘 2 1

𝑟𝑟⊥
d

d𝑟𝑟⊥
𝑟𝑟⊥𝐵𝐵2𝜙𝜙𝑘𝑘 −

1
4𝑛𝑛 𝑟𝑟⊥ 𝑐𝑐𝑘𝑘2

𝜀𝜀𝑘𝑘 = 1 + i ⁄𝜇𝜇 𝑟𝑟⊥ 𝑘𝑘 2 − ⁄𝑛𝑛 𝑟𝑟⊥ 𝜀𝜀𝐿𝐿𝑘𝑘2 𝑛𝑛 𝑟𝑟⊥ = ⁄𝑛𝑛bg 𝑟𝑟⊥ 𝑛𝑛𝑒𝑒𝑒

These are the images of 
ponderomotively driven currents

They vanish in the plasma-free 
area

Electric field in the plasma-free 
area is purely rotational 



Fourier components of the EM signal in plasma-free area
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Inside the plasma, the solution must be proportional to the source. Magnetic field and its derivative vanish on axis:
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The bounded at infinity asymptotic is evanescent (not surprisingly, as the source is subluminal):
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The `in’ and `out’ solutions are matched (eliminating the complex constant C) at the critical surface



Fourier images of the fields near the column surface
• Fourier images of radial 
electric field and the source 
spike at the critical surface

• The lack of attenuation 
would turn these peaks into 
singularities 

• Magnetic field has no 
anomaly at the critical surface

• Fields slowly decay towards 
plasma-free space

•Magnetic field and rotational 
part of electric field sharply 
fall off towards axis
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Field in the far-field zone: Formation of single-cycle THz pulse
Far-field zone – fields are exponentially evanescent:
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• High-frequency components 
decay rapidly

• The spectrum becomes 
narrower, it’s peak shifting 
towards 1 THz 

• The signal length reduces to a 
single cycle

• Signal becomes radially
polarized

• The peak-to-peak  signal 
voltage exceeds a few 100’s V/m
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Important observations and conclusions
• Surface of the plasma column, created by OFI of the neutral gas, supports an azimuthally polarized rotational 

current – a source of high-amplitude EM THz pulse following in the wake of the optical drive pulse

• The rotational current, localized in a µm-thin cylindrical shell, is produced by coupling the longitudinal electron 
velocity in the plasma wake to the radial gradient of electron density in the ionization front

• The THz signal is evanescent in the radial direction, as dictated by the sub-luminal wake phase velocity

• Faster decay of the higher-frequency components shifts the signal spectrum to 1 THz as the observer moves 
further away from the column

• At a mm-scale distance from the column surface (100’s of the column radii) the THz signal turns into a single-
cycle burst, with a peak-to-peak signal voltage on a kV/m level.

• This THz pulse may be captured by electro-optical methods, already used in diagnostics of femtosecond
electron beams [A. Curcio, F. Bisesto et al., Phys. Rev. Appl. 9, 024004 (2018)]
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Questions?
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