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Particle -In-Cell imitations

Even though they are powerful, PIC codes present some limitations

Numerical dispersion of electromagnetic waves
High computational cost due to the number of particles

Ve

A Nonlinear electron oscillations must be resolved: high

resolution

better sampling and smoothing
PIC retain all motion scales:

disadvantageous on multi  -scale systems or

very long simulations Liot > Ao
Typical computational cost

AO ~ 1”1’1’1, Ltot ~ dcm — Ttot ~

Computational time

High number of particles needed for statistical reasons:
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Reduced model: envelope approximation

I
' Relevant scales much longer than the laser wavelength: no need to resolve

'wavelength, because the motion is coupled to the laser envelope length scales
We look for a way to describe a laser pulse Reduced resolution in simulations
evolution without resolving its wavelength equals a lot of time saving!

_ A Laser envelope  Resonant with
Consistent theory to: A Electric

plasma
A Adequately describe pulse potential <— frequency:
envelope evolution A Density waves macroscopic
A Move particles retaining their A Electrostatic motion
averaged motion (no \ﬂeld Y,
oscillations) ~N
A Include the effects of the kp = wp/c

laser oscillation in the
evolution equations System quickly damps fast

oscillations outside laser pulse



Multiscale expansion from a plane wave

Multiscale approximation starting from the plane wave solution
[Cowan, Bruhwiler et al., JCP 2011; Mora, Antonsen , POP, 1996] Zeroth order results
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Laser envelope evolution equation

Maxwel |l 6s equation for
vector potential 04,4 — 2iwo (0 + ¢D,) — CQVQ] a (x,t) +®: —wg.]l(x, t)
F

Laser pulse  a  (x,t) = Rela (x, t)e""“‘)(z_“)] rom Poi ssonds

VCb ~ EW(

n The average current can be written as
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. varying factor as (-) ~ —

101 combination of slow i K

varying guantities [Mora, Antonsen , POP, 1996]
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Averaged particles dynamics
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A Particle phase space evolves on

I
I I
| . |
c dt 0] . long time scales |
1dx u i A Wake fields and laser pulse are |
P = = . two computationally different |
¢ K , | objects |
1 .2 _o _2 & AWe define the average
Fp = —4—_V a” v =1+ + 9 . sum of the averaged terms |
Y s T L L g |
The ponderomotive This is possible Laser pulse: fast varying currents
force due to the laser W Bec =t e sar split

pulse contributes
separately

¥ =1+ @+ =-

a®

the sources

Wake fields: slow varying currents

Ponderomotive approximation

— 7(p,a) =(p,a) +@/

? This in an a priori assumption
Empirical observations suggest this
IS a good approximation



Laser equation solver

P.p.Ao[um 1]

1. Retains the second temporal derivative (full (01t — 2iwo (0 + ;) — szz} A= — ﬁxé
wave operator) o o
2 Solved in the LAB frame Second derivative _is important
3. The operator is inverted explicitly for depleted pulses [Be”edetti’d
--------------------------------------------------- Schroeder etal., PFCF 2018] an
E - - - :re ularizes the explicit |
' Numerical evolution equation Invert the formula by the | gl P
| : A f centered | inversion of the operator
i Dia = 2iwoDia = Sldl :‘jnegnst_o ot | The lab frame _is chosen for
| erivatives
! M 1.00 :consistency reasons with
,  uQNe step explicit anvance  the rest of ALaDyn and to
|
L "t =F(a", ") i be able to perform an
: . 0.95 + explicit inversion
. Stability : . .
! N ' Explicit inversion is faster
! - 0 AT ! =
. CEFL o x~y/1- 0.9 ' than the implicit one and
| 2V Na ' guarantees the same CFL
: [Terzani, Londrillo, CPC, 2019] 20 40 60 sc | (stability) condition of a
|
|

: standard PIC
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Computing particles evolution

Revised version of the Boris pusher

Momentum update
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h= 2 pr
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B Modified Lorentz factor
7L, 72 7 in the ponderomotive
approximation

> Recovers Boris pusher for no laser

Position update
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Envelope benchmarks

( Longitudinal electric field in 1D approximation

Verified correctness of particle pusher
ag = 1.0 - kpwg = 8 (fluid)

< Rayleigh diffraction in vacuum

Verified correctness of laser solver
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We simulated an ultra strong laser pulse that
travels into a uniform electron plasma

ap =15 wo = 15pum  Tiywhm = 191s

Density map (saturated)
Envelope
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Envelope benchmarks/3

ag = 15 Wo = 15,um Tfwhm — 191s

Longitudinal electric field
lineout (along propagation
axis)
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Tracked particle longitudinal
momentum in the fully PIC and
Envelope scheme



