Numerical implementation of a hybrid PIC-fluid framework in laser-envelope approximation

D. Terzani¹, P. Londrillo², L. Labate^{1,3}, P. Tomassini¹, L. A. Gizzi^{1,3}

INO – CNR, Section of Pisa
 INAF
 INFN, Section of Pisa

4th European Advanced Accelerator Concepts Workshop **La Biodola Bay, Isola d'Elba**

Outline

1. ALaDyn: envelope and fluid solvers

- Explicit envelope solver
- Second order Envelope Boris pusher
- Plasma equations in fluid approximation
- 2. High quality injection scheme
 - REMPI
 - Outcomes of the optimized injection scheme

ISTITUTO NAZIONALE DI OTTICA CONSIGLIO NAZIONALE DELLE RICERCHE

Outline

1. ALaDyn: envelope and fluid solvers

- Explicit envelope solver
- Second order Envelope Boris pusher
- Plasma equations in fluid approximation

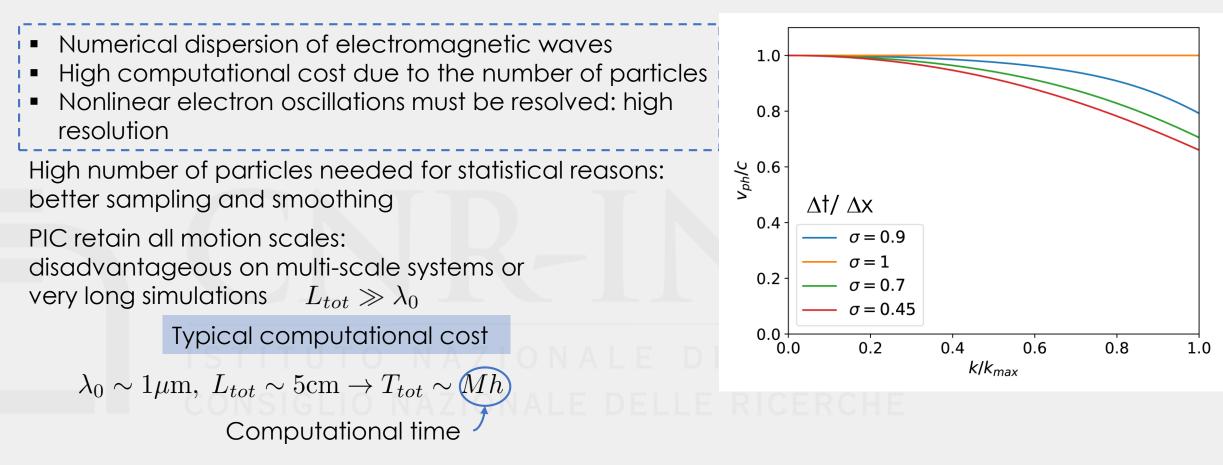
2. High quality injection scheme

- REMPI
- Outcomes of the optimized injection scheme

ISTITUTO NAZIONALE DI OTTICA CONSIGLIO NAZIONALE DELLE RICERCHE

Particle-In-Cell limitations

Even though they are powerful, PIC codes present some limitations



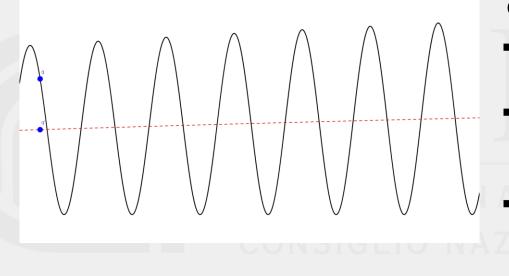
Reduced model: envelope approximation

Relevant scales much longer than the laser wavelength: no need to resolve wavelength, because the motion is coupled to the laser envelope length scales

We look for a way to describe a laser pulse evolution without resolving its wavelength

Reduced resolution in simulations equals a lot of time saving!

field



Consistent theory to:

- Adequately describe pulse envelope evolution
- Move particles retaining their averaged motion (no oscillations)
- Include the effects of the laser oscillation in the evolution equations

Laser envelope Resonant with

- Electric plasma potential
 - \leftrightarrow frequency:
- Density waves macroscopic
- Electrostatic

motion

 $k_p = \omega_p / c$

System quickly damps fast oscillations outside laser pulse

Multiscale expansion from a plane wave

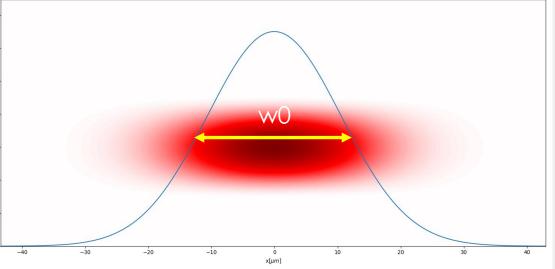
Multiscale approximation starting from the plane wave solution[Cowan, Bruhwiler et al., JCP 2011; Mora, Antonsen, POP, 1996]Zeroth order resultsFast time scale $\sim \omega_0$ Slow time scale $\sim \omega_p = \varepsilon \omega_0$ $\tilde{\mathbf{u}}_{\perp} = \tilde{\mathbf{a}}_{\perp}$ $\tilde{\mathbf{a}}_{\perp}(\xi), \tilde{\mathbf{u}}(\xi)$ $\hat{\mathbf{a}}_{\perp}(\xi), \overline{\mathbf{u}}(\xi)$ $\gamma - \beta u_z - \phi - 1 = 0$

 $\varepsilon = \frac{1}{k_0 w_0}$ "Average'' motion: equations for slow varying components can be found if

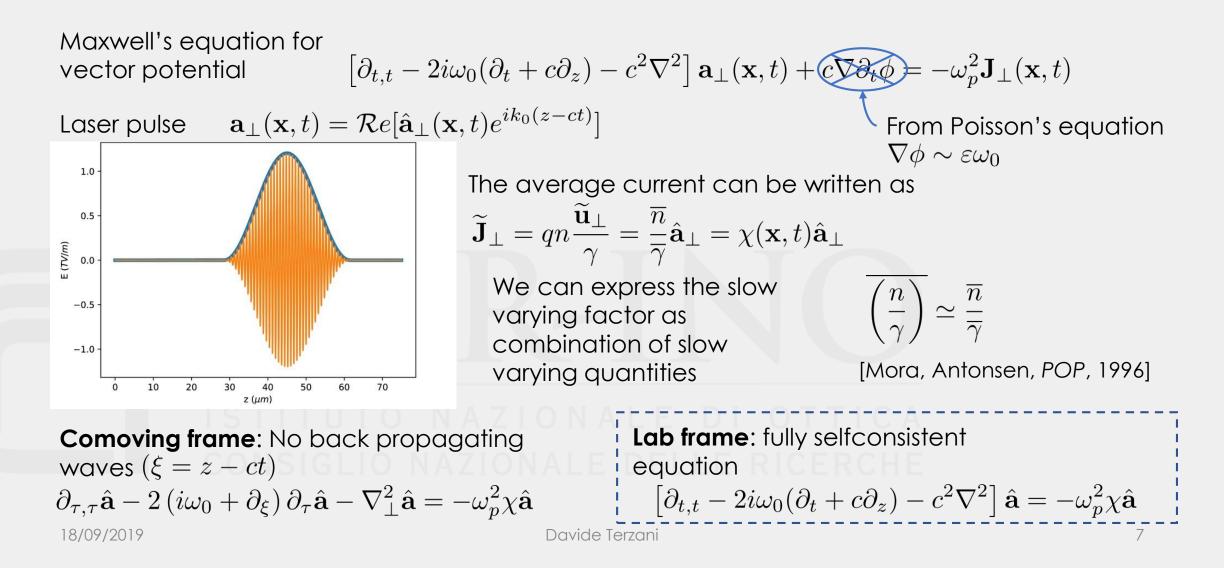
 $\varepsilon \ll 1$

Lawson – Woodward theorem holds: no net energy gain

$$1 - \frac{u_z}{\gamma} \gg \varepsilon$$
Time variations in a comoving r.f.
$$T_{Ray} = \frac{c\pi w_0^2}{\lambda_0} \qquad \partial_\tau \sim \mathcal{O}\left(\varepsilon^2\right)$$
18/09/2019



Laser envelope evolution equation



Averaged particles dynamics

$$\frac{1}{c}\frac{d\mathbf{u}}{dt} = k_p \left[\mathbf{E}_w + \frac{\mathbf{u}}{\overline{\gamma}} \times \mathbf{B}_w \right] + \mathbf{F}_L$$
$$\frac{1}{c}\frac{d\mathbf{x}}{dt} = \frac{\mathbf{u}}{\overline{\gamma}}$$
$$\mathbf{F}_L = -\frac{1}{4\overline{\gamma}}\nabla |\hat{\mathbf{a}}|^2 \quad \overline{\gamma}^2 = 1 + |\overline{\mathbf{u}}|^2 + \frac{|\hat{\mathbf{a}}|^2}{2}$$

The ponderomotive force due to the laser pulse contributes separately

This is possible because we can split the sources

 Particle phase space evolves on long time scales

- Wake fields and laser pulse are two computationally different objects
- We define the average γ as the sum of the averaged terms

Laser pulse: fast varying currents

Wake fields: slow varying currents

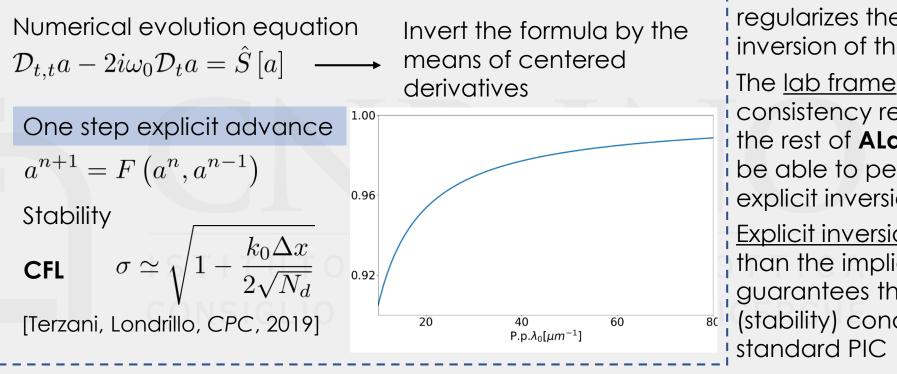
Ponderomotive approximation

$$\overline{\gamma}^2 = 1 + |\overline{\mathbf{u}}|^2 + \frac{|\hat{\mathbf{a}}|^2}{2} \quad \longleftarrow \quad \overline{\gamma}(\mathbf{p}, \mathbf{a}) = \gamma(\overline{\mathbf{p}}, \hat{\mathbf{a}}) + \Delta \quad ?$$

This in an *a priori* assumption Empirical observations suggest this is a good approximation

Laser equation solver

- 1. Retains the second temporal derivative (full wave operator)
- 2. Solved in the LAB frame
- 3. The operator is inverted **explicitly**

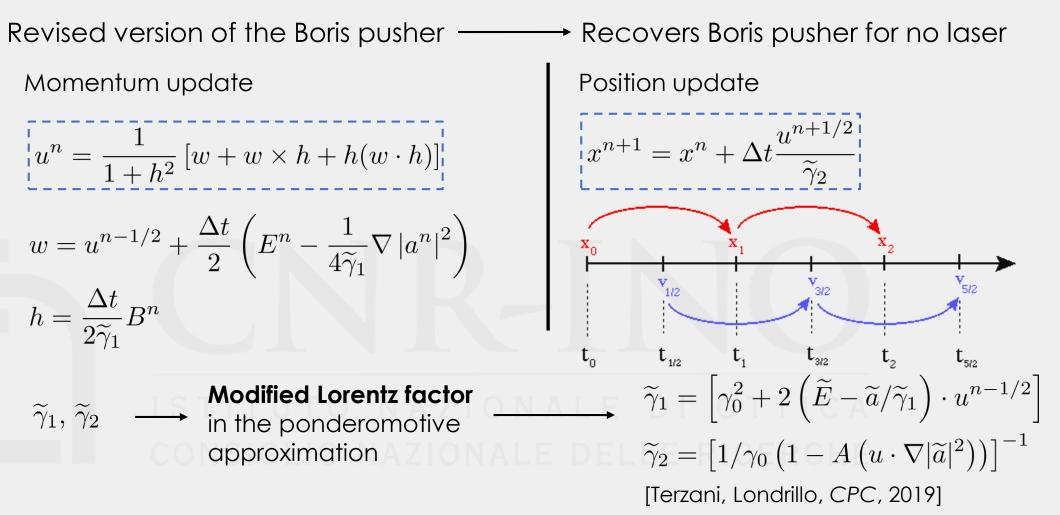


$$\left[\partial_{t,t} - 2i\omega_0(\partial_t + c\partial_z) - c^2\nabla^2\right]\hat{\mathbf{a}} = -\omega_p^2\chi\hat{\mathbf{a}}$$

Second derivative is important for depleted pulses [Benedetti, Schroeder et al., PFCF, 2018] and regularizes the explicit inversion of the operator The lab frame is chosen for consistency reasons with the rest of **ALaDyn** and to be able to perform an explicit inversion <u>Explicit inversion</u> is faster than the implicit one and guarantees the same CFL sc + (stability) condition of a

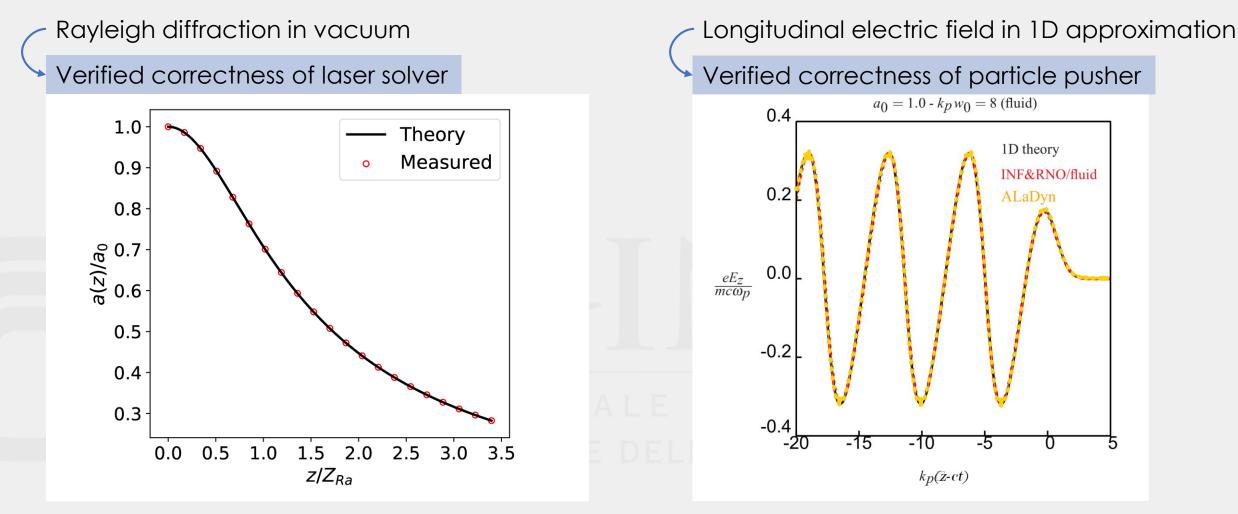
Davide Terzani

Computing particles evolution



Davide Terzani

Envelope benchmarks

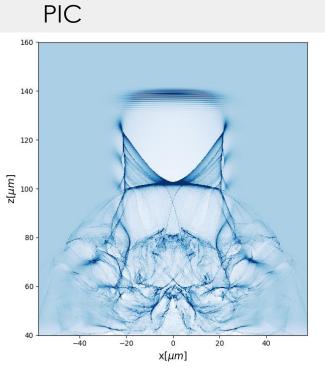


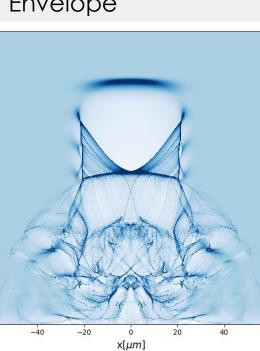
Envelope benchmarks/2

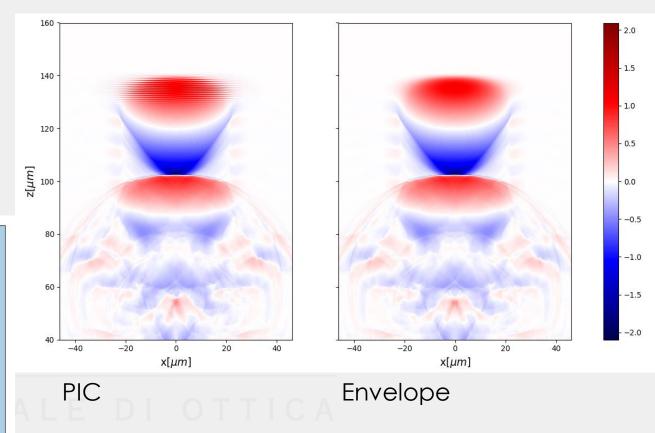
We simulated an ultra strong laser pulse that travels into a uniform electron plasma

$$a_0 = 15 \quad w_0 = 15 \mu \text{m} \quad \tau_{fwhm} = 19 \text{fs}$$

Density map (saturated) Envelope





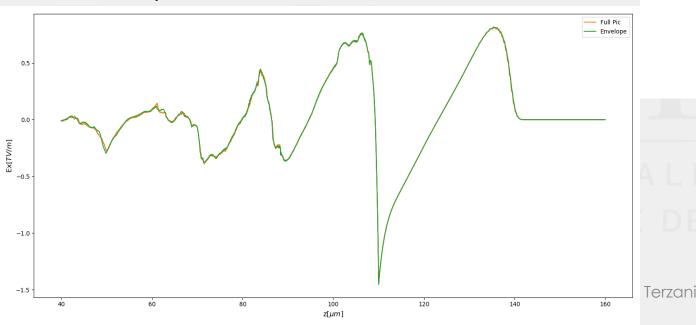


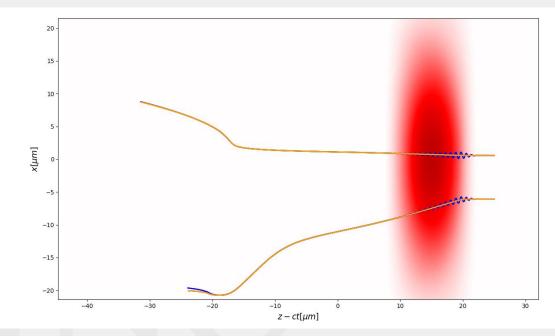
Longitudinal electric field

Envelope benchmarks/3

$$a_0 = 15$$
 $w_0 = 15\mu m$ $\tau_{fwhm} = 19 fs$

Longitudinal electric field lineout (along propagation axis)





Tracked particle longitudinal momentum in the fully PIC and Envelope scheme

Cold fluid approximation

$$\frac{\partial}{\partial t}n + \nabla \cdot \left(\frac{\mathbf{u}}{\gamma}n\right) = 0$$
$$\frac{1}{c}\frac{\partial}{\partial t}\mathbf{u} + \left(\frac{\mathbf{u}}{\gamma}\cdot\nabla\right)\mathbf{u} = q\left(\mathbf{E} + \frac{\mathbf{u}}{\gamma}\times\mathbf{B}\right)$$

In case of ponderomotive approxiamtion

 $\gamma \to \gamma_P$

$$\int q\left(\mathbf{E} + \frac{\mathbf{u}}{\gamma} \times \mathbf{B}\right) \to q\left(\mathbf{E}_w + \frac{\mathbf{u}}{\gamma} \times \mathbf{B}_w\right) + \mathbf{F}_P$$

Pros

- Doesn't need a lot of particles
- Less (a lot of!) memory usage

Very fast

(n, u) Averaged on momentum space → Plasma is described making use of 3D (spatial) functions

Valid until kinetic effects arise: density and momentum must be single – valued

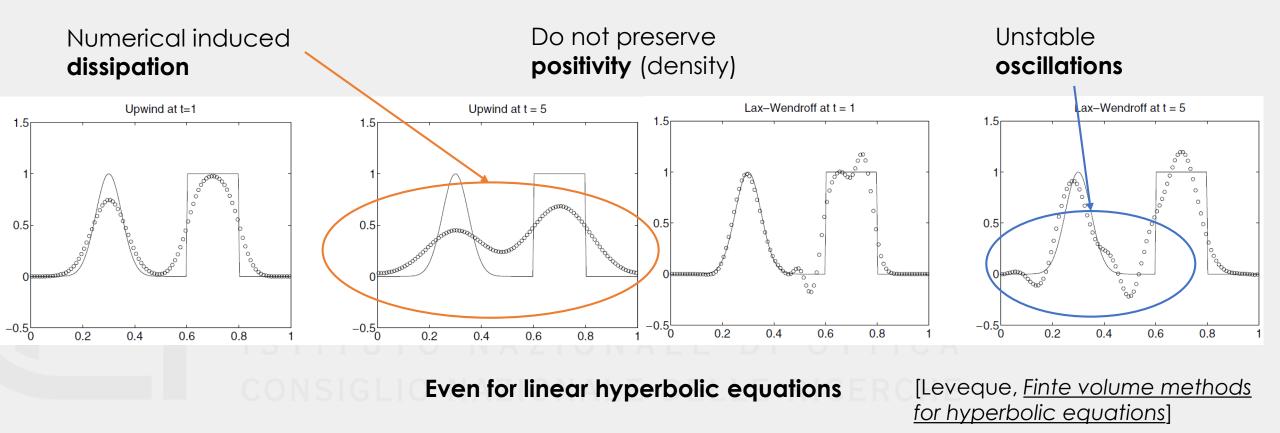
Cons

- Implementation not straightforward
- Loses accuracy near the

wavebreaking

Computational Fluid Dynamics

Several nontrivial problems related to the hyperbolic structure of the equations.



Implementation in ALaDyn

Huge literature available for hyperbolic equations for conservative and compressible Euler equations

Consistent with ALaDyn's framework

- Second order Boris pusher for particle dynamics
- Electromagnetic field solved on a staggered spatiotemporal grid (FDTD)

Particle and fluid dynamics can cooperate for a hybrid approach

Plasma (relativistic pressureless Euler + Maxwell's equations)

Easier in non – conservative form

No natural diffusive term

[Terzani, Londrillo, CPC, 2019]

 $\partial_t \mathbf{u} = \mathbf{L} [\mathbf{u}, \mathbf{x}, t]$ Adams-Bashfort discretization $\mathbf{L} [\mathbf{u}, \mathbf{x}, t] = \mathbf{F}_L - \left(\frac{\mathbf{u}}{\gamma} \cdot \nabla\right) \mathbf{u}$ Weighted Essentia

Weighted Essentially Non – Oscillatory Reconstruction (**WENO**)

Temporal integration

Adams – Bashfort method

$$\mathcal{D}_t \mathbf{u} \simeq \partial_t \mathbf{u} + c_1 \Delta t^2 \left[\frac{\partial^3 \mathbf{u}}{\partial t^3} \right] + c_2 \Delta t^3 \left[\frac{\partial^4 \mathbf{u}}{\partial t^4} \right]$$

- Method is one step (faster)
- Second order accuracy
- Consistent with PIC Electromagnetic and particle solver

Leading order dispersive plus a small dissipative error

$$\partial_t \mathbf{u} = \mathbf{F}[\mathbf{u}, \mathbf{x}, t] \qquad \mathbf{u}^{n+1} = \mathbf{u}^n + \frac{3}{2}\Delta t F^n - \frac{1}{2}\Delta t F^{n-1}$$

Source term known at integer times: compatible with Maxwell solver

Spatial integration

2nd order WENO reconstruction

$$\mathbf{S}_{\mathbf{u}} \left[\mathbf{u}, \mathbf{x}, t \right] = \mathbf{F}_{L} - \left(\frac{\mathbf{u}}{\gamma} \cdot \nabla \right) \mathbf{u}$$
$$\mathbf{S}_{n} \left[\mathbf{u}, \mathbf{x}, t \right] = -\nabla \cdot \left(\frac{\mathbf{u}}{\gamma} n \right)$$

i-2 i-1 i + 1/2 Δw_1 Δw_2 Right stencil

Reconstruct $\frac{u}{\gamma}$, u and n values using grid (known) points such that (1D example)

$$\frac{\widehat{w}_{i+1/2} - \widehat{w}_{i-1/2}}{\Delta x} = \partial_x w + \mathcal{O}\left(\Delta x^3\right)$$
Could be of any order

Choice of the interpolating stencil

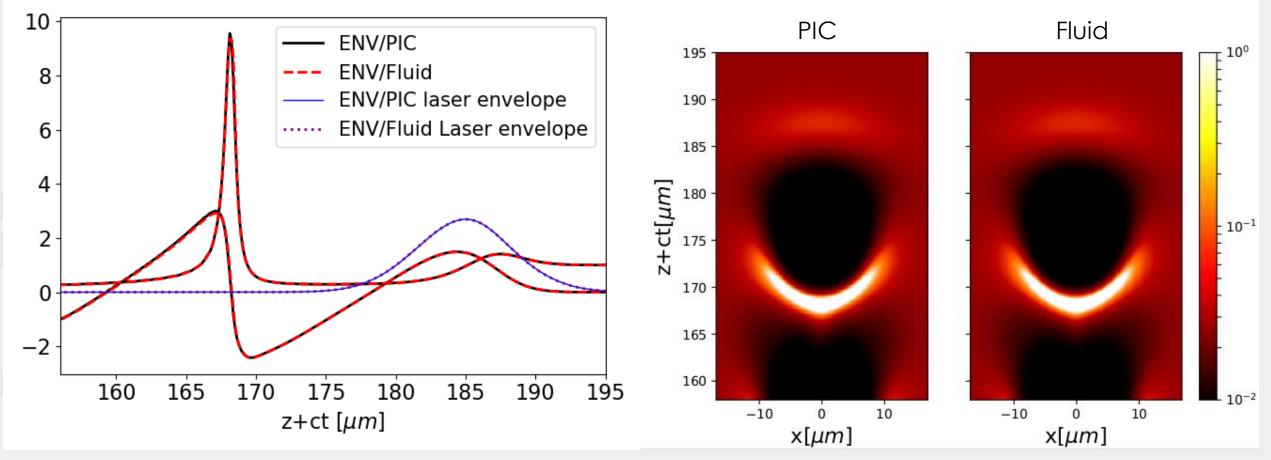
$$\widehat{w}_{i+1/2}^{L} = w_i + \frac{1}{2} \left(c_1 \Delta w_1 + c_2 \Delta w_2 \right)$$
$$\widehat{w}_{i-1/2}^{R} = w_i - \frac{1}{2} \left(c_2 \Delta w_1 + c_1 \Delta w_2 \right)$$

ISTITUTO NAZIONALE DI OTTICA

In WENO scheme c_1 and c_2 are nonlinear weights to assure smoothest non oscillatory solution

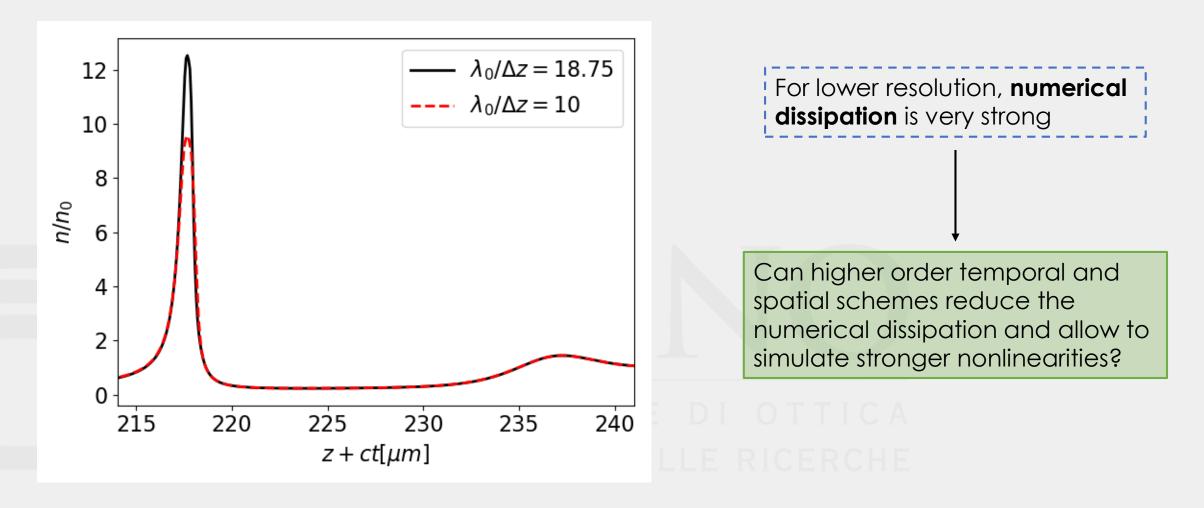
Eulerian integrator benchmarks

 $a_0 = 2.5 \quad w_0 = 12.7 \,\mu\text{m} \quad \tau_{fwhm} = 20 \,\text{fs} \quad n_0 = 4.25 \times 10^{18} \text{cm}^{-3} \quad \lambda_0 / \Delta z = 18.75$

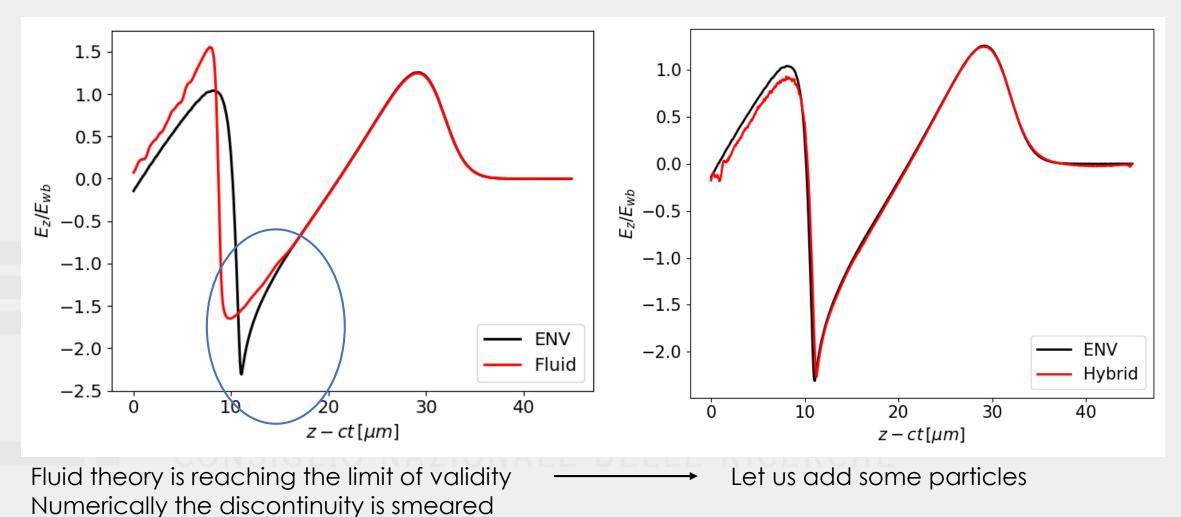


Davide Terzani

Eulerian integrator benchmarks/2



Towards strongly nonlinear regimes (preliminary)



Davide Terzani

18/09/2019

Outline

1. ALaDyn: envelope and fluid solvers

- Explicit envelope solver
- Second order Envelope Boris pusher
- Plasma equations in fluid approximation
- 2. High quality injection scheme
 - REMPI
 - Outcomes of the optimized injection scheme

ISTITUTO NAZIONALE DI OTTICA CONSIGLIO NAZIONALE DELLE RICERCHE

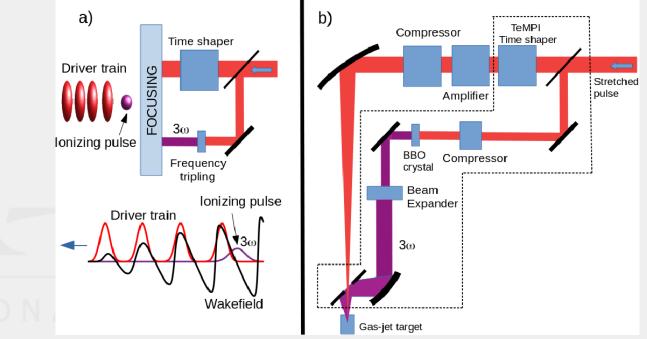
High quality injection scheme

Experiments have shown accelerated bunches, but with a poor quality

New acceleration scheme proposed within the EuPRAXIA project

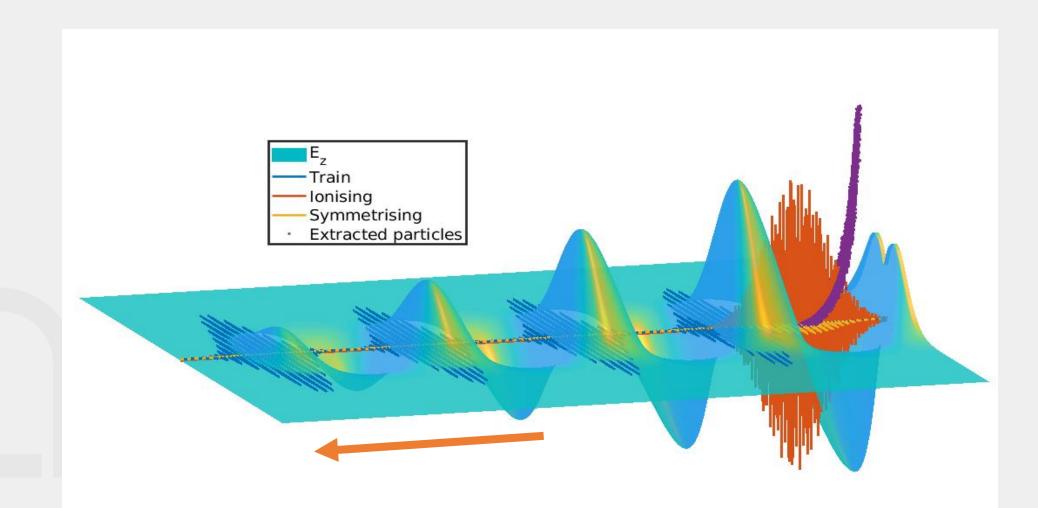
- Single 150 TW laser pulse
- Feasible with present technology
- Wakefield is excited by a train of pulses
- Particle bunch injected in the plasma ionizing a dopant with a frequency doubled (or tripled) pulse
- Beam emittance is kept low
- Experimental realization is WIP

[Tomassini et al., POP, 2017 Tomassini et al., PPCF, accepted Tomassini et al., PRAB, submitted]



IAZIONALE DELLE RICERCHE

The REMPI scheme



Optimization of the injection scheme

- Four laser driver to produce the wakefield
- One frequency tripled laser pulse to inject particles
- Very large pulse waist to avoid fast diffraction
- Independence of the system from the small frequencies

Strategy

QFluid

- Fast computational tool for a parameter scan
- Very reduced model: quasistatic approximation, plasma fluid description, 2D cylinidrical simmetry
- Runs on a laptop

ALaDyn

Parameter space has already been reduced

Very different largest and

smallest length scales and we

only want to see the slow ones

Reduced models very

recommended

- Fully selfconsistent (challenging) simulation
- Need computational resources from HPC (e.g. CINECA)

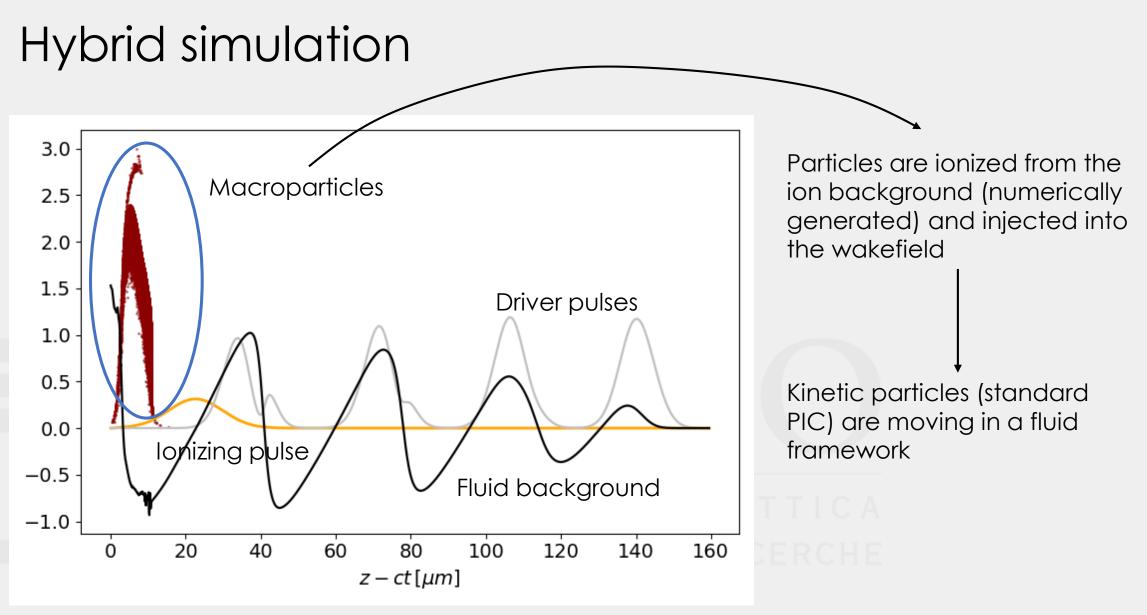
[Tomassini et al., PRAB, submitted]

Working point

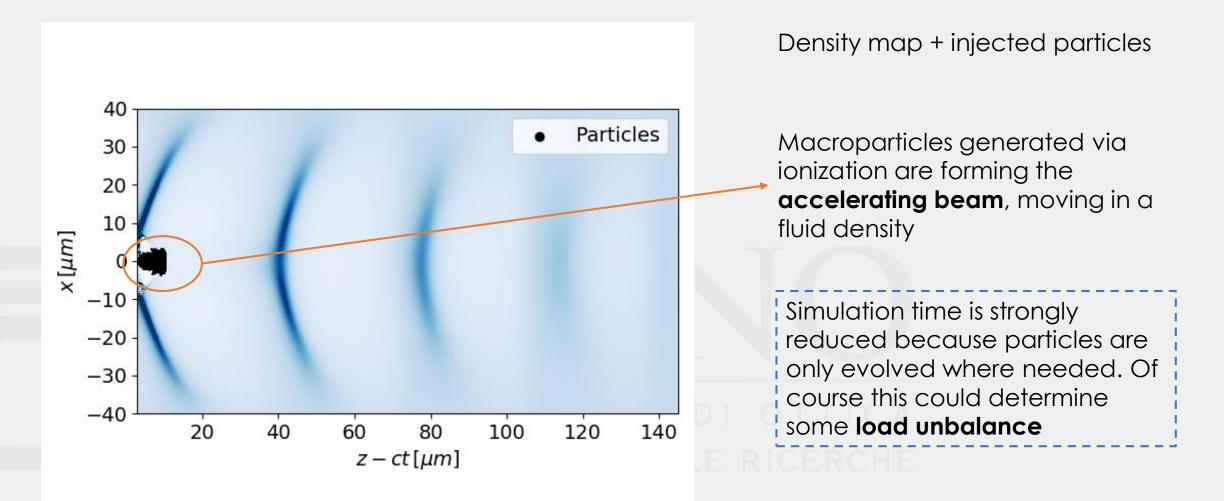
[Tomassini et al., PRAB, submitted]

$\begin{array}{l} E_{max}/E_{WB} \sim 1 \\ \hline n_0 = 1.1 \times 10^{18} \mathrm{cm}^{-3} \\ \hline L_{density} \simeq L_{laser} \\ \hline L_{charging} \simeq 100 \mu \mathrm{m} \end{array}$						
Obtained with QFluid Verified with ALaDyn in hybrid configuration						
	$\sigma(\mathcal{E})/\mathcal{E}$	$\varepsilon_n (\mathrm{nm \ rad})$	Twiss $\gamma (\mathrm{m}^{-1})$	$Q(\mathrm{pC})$	$I(\mathrm{kA})$	
Requested	<< 5 %	<< 1	< 200	≥ 30	>1	
Obtained	1.65 %	0.23	140	32	4	
18/09/2019			Davide Terzani	·		26

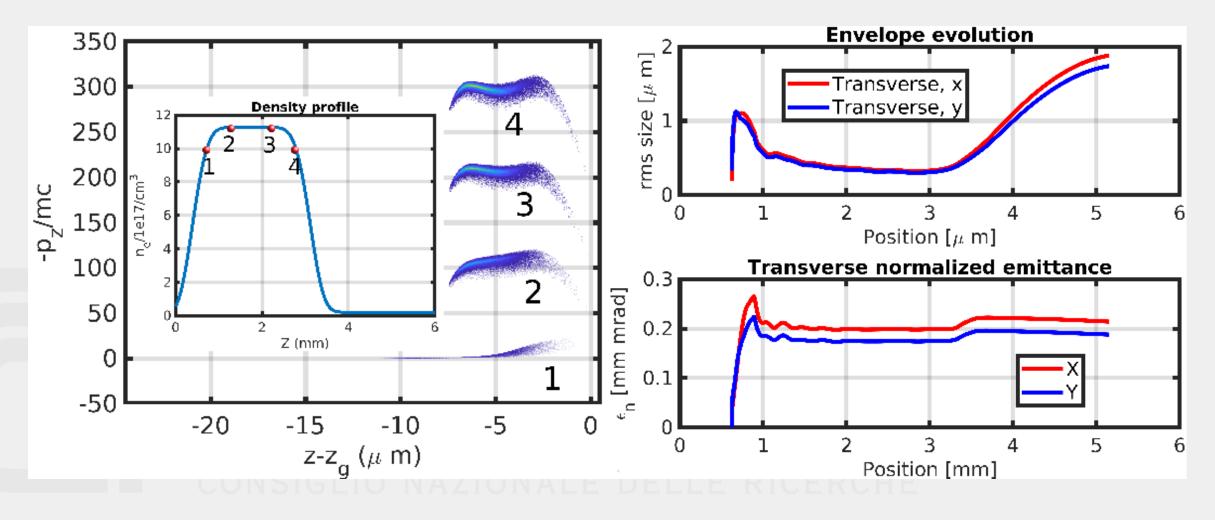
EuPRA



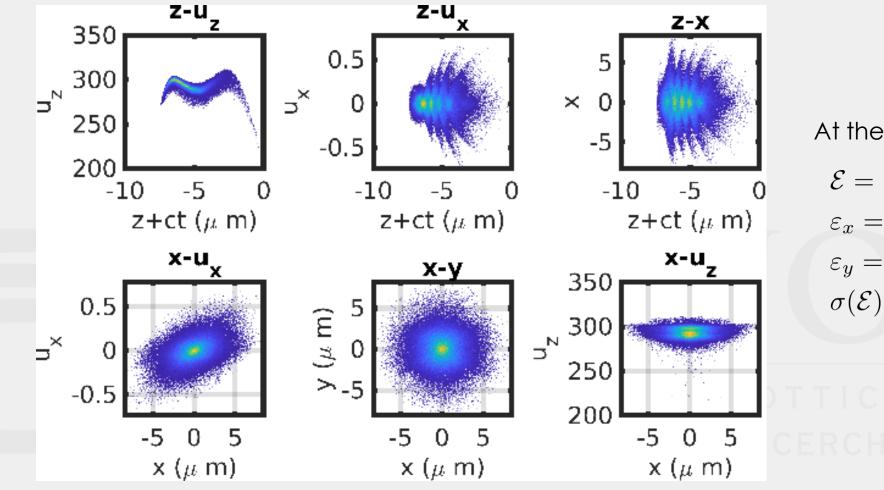
Hybrid simulation/2



Outcomes of the REMPI scheme



Outcomes of the REMPI scheme/2



At the end of the plateau $\mathcal{E} = 150 \text{MeV}$ $\varepsilon_x = 0.21 \text{mm} \times \text{mrad}$ $\varepsilon_y = 0.23 \text{mm} \times \text{mrad}$ $\sigma(\mathcal{E})/\mathcal{E} = 1.6\%$

Conclusions

- Envelope approximation allows to model LWFA without any loss of the interesting physics
 - Explicit laser solver
 - Approximated particle pusher
- Fluid approximation greatly boost simulations where fluid theory holds (no kinetic effects)
 - Execution time $\tau \sim 1$ p.p.c.
 - Physics is entirely retained
 - WENO schemes can offer a flexible, easy and robust option for integration
 - For strongly nonlinear regimes a hybrid approach (fluid + few macroparticles) is a promising alternative. WARNING: correctness of the results and time gains must be evaluated case by case
- **REMPI** scheme is very demanding in terms of computational time
 - Preliminary parameter scan with QFLUID
 - ALaDyn in fluid + ionized macroparticles configuration to simulate physics with more accuracy

CONSIGLIO NAZIONALE DELLE RICERCHE

References

- D. Terzani, P. Londrillo, "A fast and accurate numerical implementation of the envelope model for laser-plasma dynamics", Computer Physics Communications 242 (2019)
- P. Tomassini, D. Terzani, L. Labate, G. Toci, A. Chance, P. Nghiem, L. A. Gizzi, PRAB, submitted
- P. Tomassini, S. De Nicola, L. Labate, P. Londrillo, R. Fedele, D. Terzani, L. A. Gizzi, "The resonant multi pulse ionization injection", Physics of Plasmas (2017)
- P. Tomassini, S. De Nicola, L. Labate, P. Londrillo, R. Fedele, D. Terzani, F. Nguyen, G. Vantaggiato, L. A. Gizzi, "High quality GeV scale electron bunches with the Resonant Multi Pulse Ionization Injection", NIMA, 2018

ISTITUTO NAZIONALE DI OTTICA CONSIGLIO NAZIONALE DELLE RICERCHE