Stable positron acceleration in self-generated quasi-hollow channels

Thales Silva¹, J.Vieira¹

M. J. Hogan², V. Yakimenko², K. V. Lotov³, R. Zgadzaj⁴, M. C. Downer⁴

GoLP / Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico Lisbon, Portugal

² SLAC National Accelerator Laboratory Menlo Park, California, USA

³ Budker Institute of Nuclear Physics & Novosibirsk State University Novosibirsk, Russia

⁴ Department of Physics, The University of Texas at Austin Austin, Texas, USA

epp.tecnico.ulisboa.pt || **golp**.tecnico.ulisboa.pt

Simulations performed at Marenostrum at Barcelona Supercomputing Center and JUWELS at Jülich Supercomputing Centre

T. Silva | EPP Meeting | September, 2019

Positron acceleration and hollow channels

Positron acceleration

- Linear regime has low acceleration gradients and non-linear transverse forces
- Blowout regime has a very limited region of accelerating and focusing fields for positrons.
- Some alternatives studied are
 - Self-loaded wakefields¹ [energy transfer from head to tail]
 - On-axis filaments driven by Laguerre-Gaussian lasers²

I S. Corde *et al.*, Nature **524**, 442 (2015)
2 J.Vieira and J.T. Mendonça., PRL **112**, 215001 (2014)

Hollow channels

- Hollow channels are promising candidates for electron and positron acceleration.
 - ✓ (Nearly) vanishing transverse forces³; *emittance preservation*
 - ✓ Long drivers are allowed; high transformer ratio
 - × Beam breakup instabilities are a severe constrain for this scheme⁴
- Hollow channel generation
 - Laser with high order Bessel profile⁵
 - Tightly focused positron beams⁶
- Recent breakthrough: coaxial plasma filament mitigates beam breakup⁷.

3 T. C. Chiou *et al.*, PoP **2**, 310 (1995)

- 4 C. B. Schroeder et al., PRL 82, 1177 (1999)
- 5 S. Gessner et al., Nat. Comm. 7, 11785 (2016)
- 6 L. D. Amorim et al., AIP Conf. Proc. 1777, 070001 (2016)
- 7 A. Pukhov and J. P. Farmer, PRL **121**, 264801 (2018)

Generation of a quasi-hollow channel suitable for e⁺ acceleration

I C. B. Schroeder et al., PoP **20**, 080701 (2013)

Quasi-hollow channels have been proposed as a way to mitigate beam breakup for acceleration of electron beams¹

• Self-consistent generation of a quasi-hollow channel with structures near the axis that can focus positrons.

Hollow channel generation how we generate an almost hollow channel with structures that can focus e⁺

Positron acceleration optimizations, beam evolution, and stability

Summary and future work

Blowout regime in beam driven plasma accelerators and the long-time plasma evolution

- particles and fields at large timescales²?
- Observation of quasi-hollow channels in certain regimes.

F. Li et al., Computer Physics Communications **214** (2017) 2 R. Zgadzaj et al., submitted.

• Previous work: how does the energy deposited by the beam in the plasma is distributed among the

Ponderomotive-like force rules the plasma long-time evolution

Unpublished results

Hollow channel generation

how we generate an almost hollow channel with structures that can focus e⁺

Positron acceleration

optimizations, beam evolution, and stability

Summary and future work

Unpublished results

Positron beam is accelerated with minimal hosing growth

Positron beam is accelerated without losing quality

* For hosing mitigation [T.Mehrling et al., PRL 118, 174801 (2017)] ‡ A. Ferran Pousa et al., PRL 123, 054801 (2019)

Acceleration characteristics

- Initially chirped energy^{*} is partially compensated during acceleration[‡]
- Acceleration gradient 3.5GV/m
- < 30% emittance growth
- Somewhat optimized beamloading

+ hosing saturation

Hosing growth and saturation

- Simulations still ongoing...
- Black curve: initially symmetric beam
- Blue and red curves: seeded hosing

Saturation at very reasonable values!

Hollow channel generation

how we generate an almost hollow channel with structures that can focus e⁺

Positron acceleration optimizations, beam evolution, and stability

Summary and future work

Summary & Future Work

Simulations show quality positron acceleration in this scheme

Small emittance growth

Minimal hosing growth, saturation at reasonable values

On-going work: seeding hosing

Promising results thus far

acceleration gradients. Plasma density and gas used could also have an impact

Setup not fully optimized. Driver(s) beam(s) optimization (charge, shape) could lead to higher

