

Modeling the L|PWFA hybrid accelerator using PIConGPU

<u>A. Debus¹, R. Pausch¹, K. Steiniger¹</u>

M. Bussmann¹, M. Garten^{1,2}, A. Huebl^{1,2}, R. Widera¹, T. Kurz^{1,2}, S. Schöbel^{1,2}, Y.-Y. Chang¹, J. Couperus Cabadağ¹, A. Köhler^{1,2}, O. Zarini^{1,2}, T. Heinemann^{3,4}, H. Ding⁵, A. Döpp⁵, M. F. Gilljohann⁵, O. Kononenko⁶, G. Raj⁶, S. Corde⁶, B. Hidding⁴, S. Karsch⁵, A. Martinez de la Ossa³, A. Irman¹, U. Schramm^{1,2}

Hybrid Collaboration

- 1) Helmholtz-Zentrum Dresden Rossendorf (HZDR)
- 2) Technische Universität Dresden
- 3) Deutsches Elektronen-Synchrotron (DESY)
- 4) University of Strathclyde
- 5) Ludwig-Maximilian Universität München (LMU)
- 6) Laboratoire d'Optique Appliquée (LOA)

DRESDEN

HELMHOLTZ | ZENTRUM DRESDEN | ROSSENDORF

Combining LWFA and PWFA

A compact source for high brightness electron beams

- driven by high-power laser pulse
- compact, laboratory-sized
- provides high-current electron beam

- driven by high-current beam
- km-sized facilities (FACET SLAC)
- capable of producing high-brightness witness beams

Combine both to build a compact PWFA accelerator

Mitglied der Helmholtz-Gemeinschaft EAAC 2019 | Elba, Italy | September 15th – 20th, 2019 | Dr. Alexander Debus

Concept of the hybrid LWFA-PWFA accelerator

Schematic layout of the combined setup

~0.5 nC injection via self-truncated ionization injection

high-brightness witness beam acceleration

Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams Thomas Kurz, et al., Manuscript submitted.

Mitglied der Helmholtz-Gemeinschaft

Proof of principle L|PWFA experiment

Setup realized at HZDR

Looking into the L|PWFA using PICon GPU an ISAAC visualization

Start-to-end simulations of L|PWFA using PIConGPU

An open source, fully relativistic, 3D3V particle-in-cell code

- Use 3D, start-to-end simulations for comprehensive dynamics, such as identifying source of electron driving the PWFA stage.
- Main simulation campaign over 50 simulation setups and several Mega-CPUh total.

- Combination of LWFA and PWFA provides more knobs for getting things wrong.
- Long simulations are demanding with regard to performance, accuracy and stability.

How the initial L|PWFA hybrid setup is modeled

- Include experimentally measured density profile
- Use different particle species to study PWFA injection process
- Use combined BSI+ADK ionization model
- Both pre-ionized and self-ionized PWFA stage can be simulated.

density profile: 6 laser sim LPWFA 5 $n_{\rm e}/n_0$ [10¹⁸ cm⁻³] sim LWFA exp LWFA 4 sim PWFA LWFA ÞWFA exp PWFA 3 foil foi 2 0 0 2 8 4 10 z[mm]

measured and simulated

Now: let's have a detailed look at the LWFA stage and issues arising in laser modeling

Mitglied der Helmholtz-Gemeinschaft

1st generation

Page 7

Numerical issues we encountered

From numerical Cherenkov with Yee to dephasing with Lehe

Simulations now require 192 Nvidia k80 GPUs.

2nd generation

Page 8

EAAC 2019 | Elba, Italy | September 15th – 20th, 2019 | Dr. Alexander Debus

Laser modes as measured in the experiment

It does not look that bad - does it have an influence?

3rd generation

Mitglied der Helmholtz-Gemeinschaft

Page 9

EAAC 2019 | Elba, Italy | September 15th – 20th, 2019 | Dr. Alexander Debus

EAAC 2019 | Elba, Italy | September 15th – 20th, 2019 | Dr. Alexander Debus

Third generation start-to-end simulation

Included feedback from experiment to get the driver energy right

EAAC 2019 | Elba, Italy | September 15th – 20th, 2019 | Dr. Alexander Debus

Third generation start-to-end simulation Driver divergence is too low - blowout regime is always reached

Increasing laser blocker foil density and thickness to fully block the laser leads to increase in driver divergence

EAAC 2019 | Elba, Italy | September 15th – 20th, 2019 | Dr. Alexander Debus

Increasing laser blocker foil density and thickness to fully block the laser leads to increase in driver divergence

Injected electrons originates from both downramp injection in the first jet & from directly behind the foil

EAAC 2019 | Elba, Italy | September 15th – 20th, 2019 | Dr. Alexander Debus

Resulting start-to-end simulations shows good agreement with experiment

Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams Thomas Kurz, et al., Manuscript submitted.

concept

Summary and Conclusions

reproducing witness bunch acceleration in the hybrid scheme

- The L|PWFA hybrid scheme enables building a compact, laboratory sized PWFA accelerator.
- Both stages operate in the blowout regime, thus simulations are required for understanding the detailed laser plasma dynamics and optimizing the setup.
- Reproducing the experimental setup with the simulation is essential to capture the plasma dynamics correctly.
- Start-to-end simulations of the L|PWFA using PIConGPU show good agreement with measured features (energy spectra, angular distributions, charge, gradients, ...).

Thank you for your attention!

