Modeling of capillary discharge plasmas for wakefield acceleration and beam transport

Nathan M. Cook*[&], Johan Carlsson[&], Paul Moeller[&], Rob Nagler[&], and Petros Tzeferacos[#]

*ncook@radiasoft.net

September 17, 2019

4th European Advanced Accelerator Concepts Workshop

This work is supported the US DOE Office of Science, Office of High Energy Physics: DE-SC0018719.

Outline

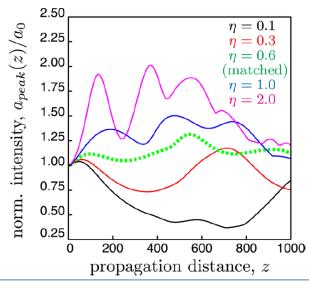
- Motivation
- Modeling discharge capillary plasmas with FLASH
 - Solvers, EOS, and boundary conditions
 - Discharge current and transport
- Benchmarks for 2D capillary simulations
 - Three-phase capillary dynamics
 - Comparison of radial density and temperature profiles
- Additional considerations
 - Laser heater for sub-channel formation
 - Nonlinearities in plasma current response
- A FLASH interface for capillary modeling

Future compact accelerators rely on plasma stages

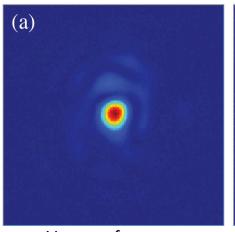
- Wakefield acceleration challenges
 - Plasma stages must reach higher energy (~10 GeV per stage)
 - Reproducible and robust at high repetition rate
 - Longer targets, lower densities, and better driver coupling are required
- Beam transport challenges
 - Collider quality beams must transport cleanly between stages
 - Stronger fields, shorter elements, more flexibility are required
- Capillary discharge plasmas promise solutions to both problems
 - Low density, parabolic channels with small matched spot sizes for LWFA
 - High peak currents for orders-of-magnitude increase in focusing fields
 - Flexible ionization profiles for novel plasma columns
 - Existing tools are insufficient to model dynamics with require fidelity

Radial density channels enable laser guiding

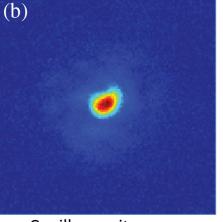
- Maintain laser intensity along channel
 - Gaussian laser matches to a parabolic channel

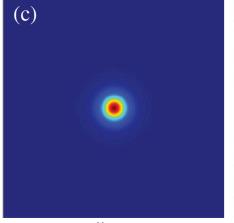

$$n_p(r) = n_0 + \Delta n \frac{r^2}{W_0^2}$$

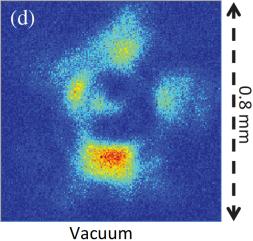
Mismatch leads to intensity oscillations


$$\lambda_{\rm osc} = \pi z_{RM} = \pi^2 r_0^2 / \lambda_0$$

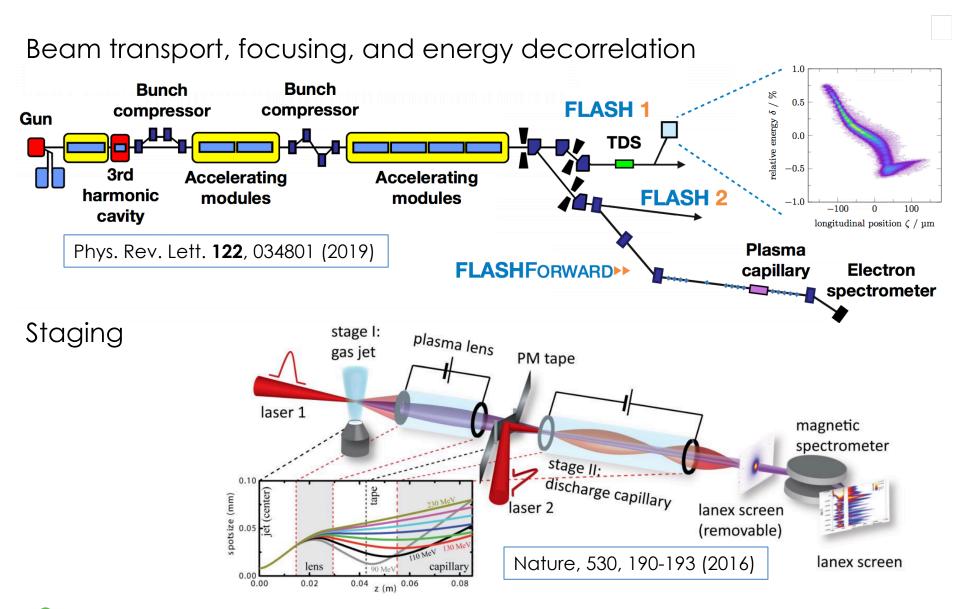
Capillaries constrain profile and density


Phys. Rev. Lett. 122, 084801 (2019)


Phys. of Plasmas 19, 053101 (2012)


Vacuum focus z=0 cm

Capillary exit z=20 cm (experiment)


Capillary exit z=20 cm (simulation)

z=5.4 cm

High field strengths enable beam transport

Deconstructing a Capillary Discharge Plasma

- Narrow insulating tube with controlled gas flow
 - Hydrogen, Helium, Argon
 - Length from ~1-30 cm
 Radius from ~0.1-1 mm
- Applied voltage to rings to drive discharge
 - Vary density, voltage to adjust
- Many computational Complexities
 - High Aspect Ratio
 - High temporal resolution required
 - Transport timescales (0.01-10 ps) are small compared to discharge (>100 ns)
 - Magnetic field effects require explicit integration
 - Time Dependent boundaries require special treatment
 - Discharge representation influences choice of boundary conditions
 - Electrical and Thermal conductivities must change self-consistently

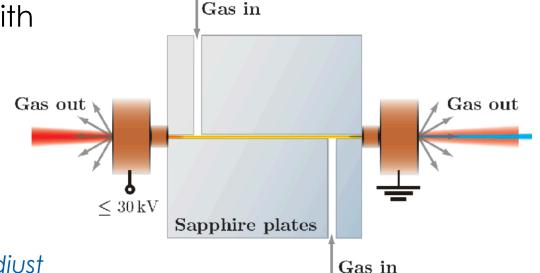
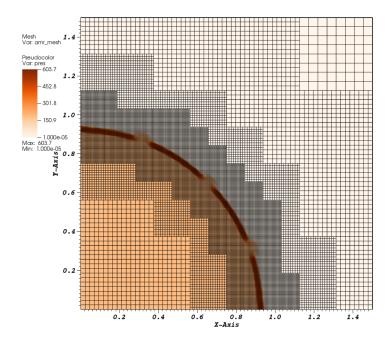


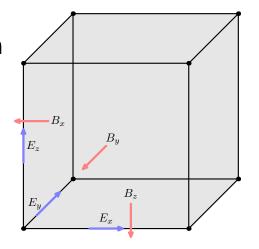
Figure Credit: Jens Osterhoff



Adopting the FLASH code

- Publicly available multi-physics application developed at University of Chicago – Flash Center for Computational Science (1997)
 - Compressible flow problems from astrophysics to HEDP
 - Additional Physics specific to HEDP
 - Heat exchange, ionization, conductivity/resistivity/viscosity/opacity, radiative transfer, inverse Bremmsstrahlung, gravity, nuclear burning, NEI, and more
- Modular design written in Fortran
 - Include only necessary physics within each executable
 - Pre-tabulate user configurable input/output parameters
 - Separate runtime configuration options
- External solver libraries
 - HYPRE provides general, implicit diffusion solves
 - PARAMESH and Chombo for AMR
 - Gamma law or pre-tabulated equations of state
- Data Analysis Tools
 - Parallel I/O support via HDF5 and NetCDF
 - VisIt plug-in for HPC visualization pipeline
 - Python YT, IDL, OpenPMD ("Rad-Hydro") APIs

FLASH Fundamentals


- Uniform, block-structured grid
 - AMR with user-specified refinement
- 1/2/3D geometries
 - Cartesian, Spherical, Cylindrical, Polar
- Solves fluid evolution with convection

$$\left\{
\begin{array}{l}
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) = 0 \\
\frac{\partial}{\partial t} (\rho \boldsymbol{v}) + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{v}) + \nabla P_{\text{tot}} = 0 \\
\frac{\partial}{\partial t} (\rho E_{\text{tot}}) + \nabla \cdot [(\rho E_{\text{tot}} + P_{\text{tot}}) \boldsymbol{v}] = Q_{\text{las}} - \nabla \cdot \boldsymbol{q}
\end{array}
\right\}$$

3T capabilities (per species)

$$\begin{pmatrix} \frac{\partial}{\partial t}(\rho e_{\rm i}) + \nabla \cdot (\rho e_{\rm i} \boldsymbol{v}) + P_{\rm i} \nabla \cdot \boldsymbol{v} = \rho \frac{c_{v,\rm e}}{\tau_{ei}} (T_{\rm e} - T_{\rm i}) \\ \frac{\partial}{\partial t}(\rho e_{\rm e}) + \nabla \cdot (\rho e_{\rm e} \boldsymbol{v}) + P_{\rm e} \nabla \cdot \boldsymbol{v} = \rho \frac{c_{v,\rm e}}{\tau_{ei}} (T_{\rm i} - T_{\rm e}) - \nabla \cdot \boldsymbol{q}_{\rm e} + Q_{\rm abs} - Q_{\rm emis} + Q_{\rm las} \\ \frac{\partial}{\partial t} (\rho e_{\rm r}) + \nabla \cdot (\rho e_{\rm r} \boldsymbol{v}) + P_{\rm r} \nabla \cdot \boldsymbol{v} = \nabla \cdot \boldsymbol{q}_{\rm r} - Q_{\rm abs} + Q_{\rm emis} \end{pmatrix}$$

- Electromagnetic fields defined on a Yee mesh
 - Secondary, uniform mesh overlapping fluid domain
- Second-order accurate predictor-corrector updates both fluid and field quantities
 - Divergence-free condition enforced
 - Explicit integration scheme

FLASH – Transport and Boundaries

Dissipation described by conduction and heat exchange

$$\frac{\partial e_{\rm e}}{\partial t} = \nabla \cdot K_{\rm e} \nabla T_{\rm e} \qquad \qquad \frac{\partial e_{\rm i}}{\partial t} = \frac{c_{v,\rm e}}{\tau_{ei}} (T_{\rm e} - T_{\rm i}) \\ \frac{\partial e_{\rm e}}{\partial t} = \frac{c_{v,\rm e}}{\tau_{ei}} (T_{\rm i} - T_{\rm e})$$

Spitzer model describes plasma resistivity (and thermal conduction)

$$\eta_{\perp} = \frac{4\sqrt{2\pi}}{3} \frac{Ze^2 m_e^{1/2} \ln \Lambda}{(4\pi\epsilon_0)^2 (k_B T_e)^{3/2}} F(Z)$$

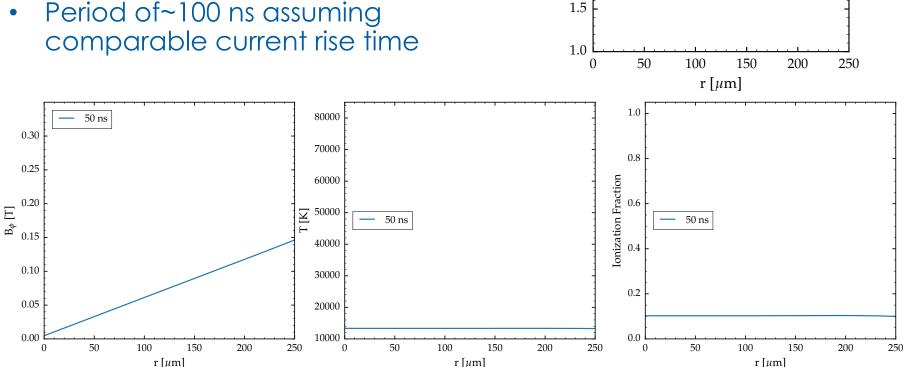
- Magnetic field specified along boundary via Ampere's Law
 - Discharge is modelled via changing field at the boundary
 - Insufficient to describe breakdown, but acceptable for slowly varying current
- Notable Boundary Conditions
 - At r=0: Axisymmetric (reflecting) conditions for transverse fluid flow
 - At r=R: Dirichlet conditions for transverse fluid flow v / = 0
 - Need to zero fluxes at outer radius to prevent outflow
 - At r=R: Dirichlet condition for thermal conductivity ($K_e(r=R)$)
 - Differs from analytical solutions specifying temperature at boundary

Capillary Benchmark Simulations in R-Z

4.0

3.5

3.0


2.5

2.0

 $n_e [10^{18} \, \mathrm{cm}^{-3}]$

50 ns

- Phase I: Uniform Ohmic heating
 - Rising, linear magnetic field profile
 - Some initial ionization used to bootstrap field penetration into the plasma
 - **Uniform Heating**
 - Increasing ionization
 - No distinctive plasma motion
- Period of~100 ns assuming

EAAC - September 17, 2019

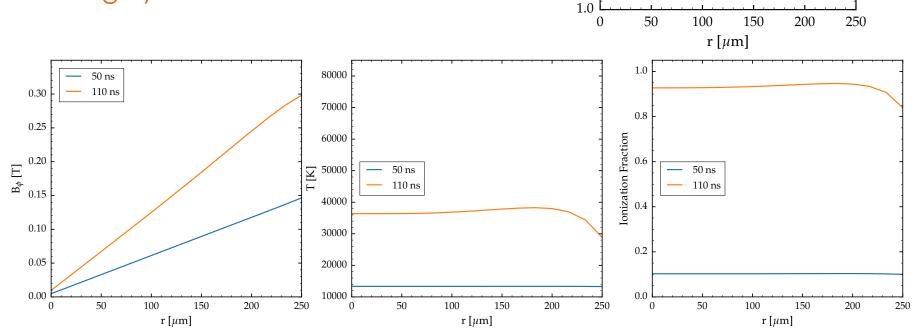
Capillary Benchmark Simulations in R-Z

4.0

3.5

3.0

2.5


2.0

1.5

50 ns

110 ns

- Phase II: Conductive cooling at wall
 - Almost total ionization
 - Strong cooling at channel wall
 - Significant transverse velocity drives plasma redistribution
 - Nearly constant (rising linear) magnetic field profile
- Roughly 20 ns for channel formation

EAAC – September 17, 2019

Capillary Benchmark Simulations in R-Z

4.0

- Phase III: Steady state channeling
 - Cooling at channel wall balances Ohmic heating along central axis
 - Quadratic reduction in temperature yields parabolic radial density profile
 - Complete ionization of plasma
 - Drift away from uniform current distribution

80000

70000

60000

40000

30000

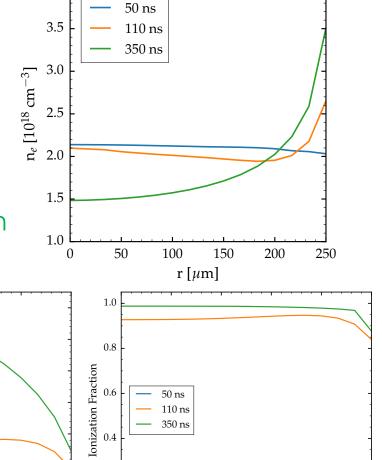
20000

10000

250

∑ 50000 ⊢ 50 ns

110 ns


350 ns

50

100

r [µm]

Sustained through discharge duration

100

150

200

50 ns

350 ns

50

0.30

0.25

0.20

0.15

0.10

0.05

0.00

200

150

0.2

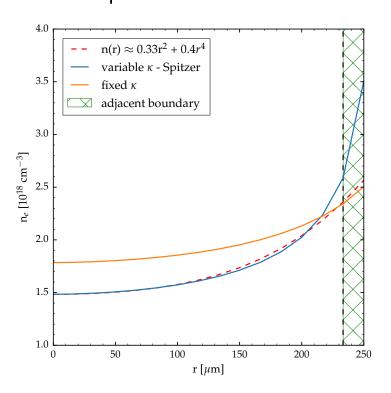
0.0

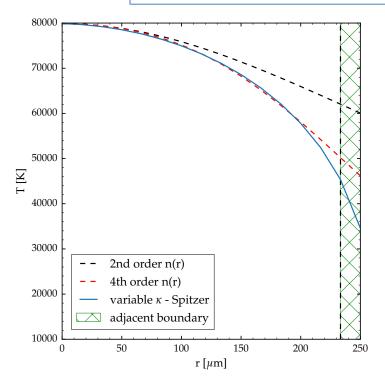
250

50

100

r [µm]

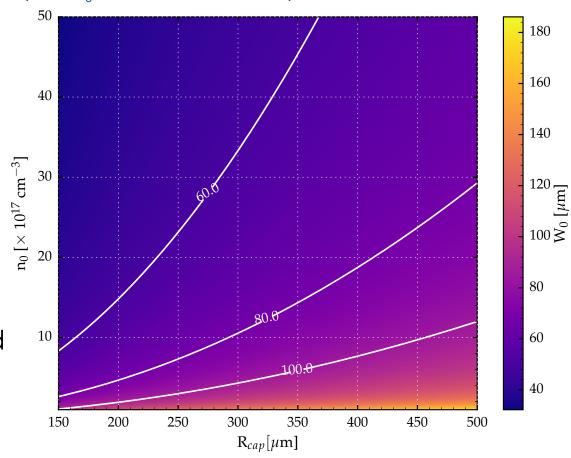

150


200

250

Comparison to analytical model

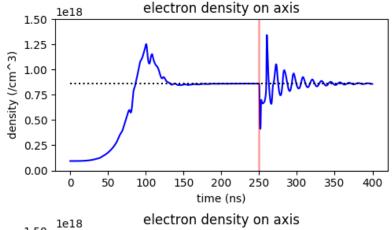
A 1D model* predicts an approximate series solution for the density and temperature
 *Phys. Rev. E, 65, 016407 (2001)

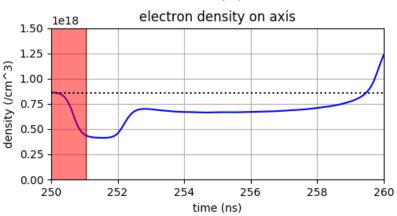

• Constant conductivity approximation is insufficient to develop channel depth $(8\sqrt{3/2} \ k_B^{7/2} \ / \ 1 \ \sqrt{T_e^{5/2}}$

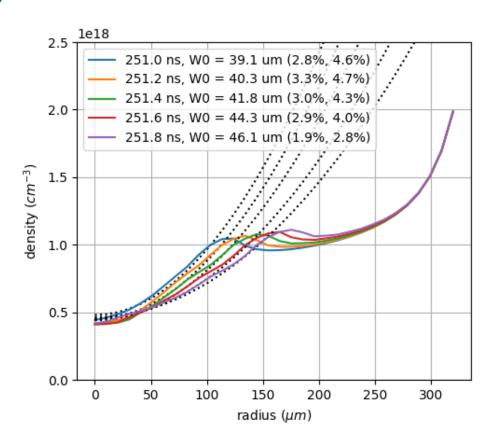
 $K_{\text{ele}} = \left(\frac{8}{\pi}\right)^{3/2} \frac{k_B^{7/2}}{e^4 \sqrt{m_e}} \left(\frac{1}{1+3.3/\mathbf{z}}\right) \frac{T_e^{5/2}}{\mathbf{z} \ln \Lambda_{ei}}$

Laser Deposition

- Lower densities diminish dephasing and depletion
 - At these densities, matched spot size may be too large to reach necessary intensity
 - e.g. At 10^{17} cm⁻³, matched spot w₀ twice BELLA laser spot size
- Achieving 60-70 m guided spots requires either small capillary or high density.
- Introduction of "heater laser" further reduces axial density and increases matched spot size

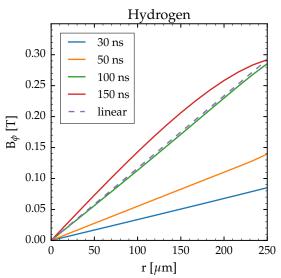


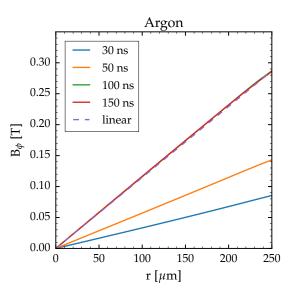


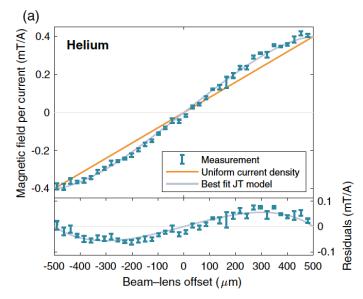

EAAC – September 17, 2019

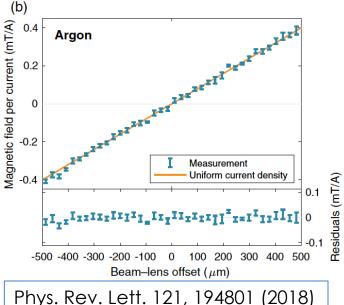
Modeling sub-channel formation via laser "heater"

- Proof of principle studies of laser deposition in pre-formed channel
 - Gaussian laser, $\lambda_R \gg L_Z$ produces collisional heating
- For large pulse energies (~1 J), significant channeling observed, even at large background densities
 - $-\rho = 8 \times 10^{17} \text{ cm}^{-3} \rightarrow \rho = 4 \times 10^{17} \text{ cm}^{-3}$, reduction of spot size from 75 to <50 micron
 - Density reduction scales laser intensity

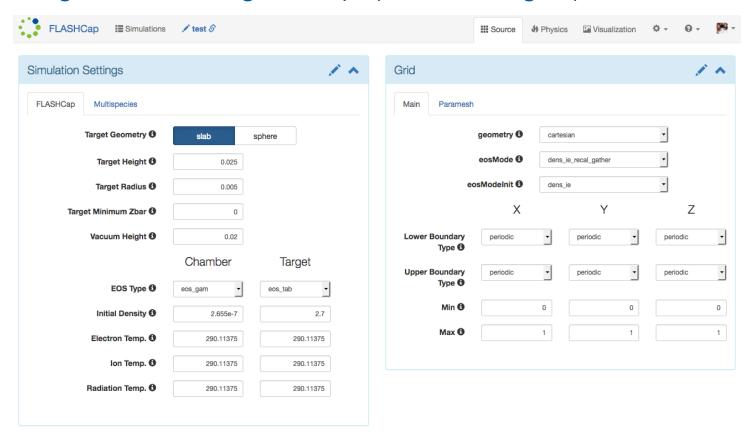



Capturing Nonlinear Current Distributions


- Experimentally observed nonlinearities in field reproduced by simulations
 - Temperature deviation drives current deviation*

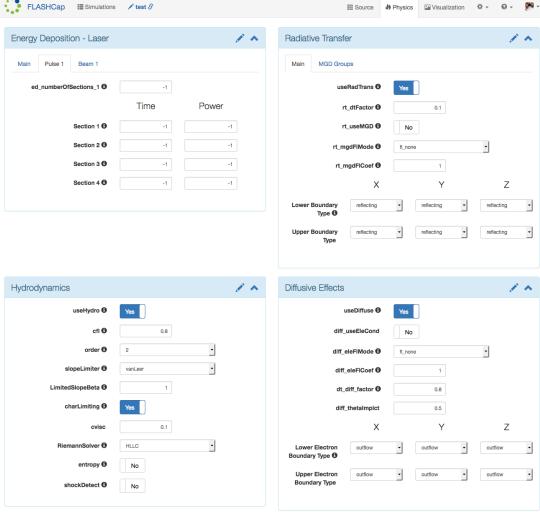

$$J(r) \propto T_e(r)^{3/2}$$

- Timescale of deviation from linearity is a function of mass
 - ex. Argon maintains linear profile after 150 ns, whereas Hydrogen evolves

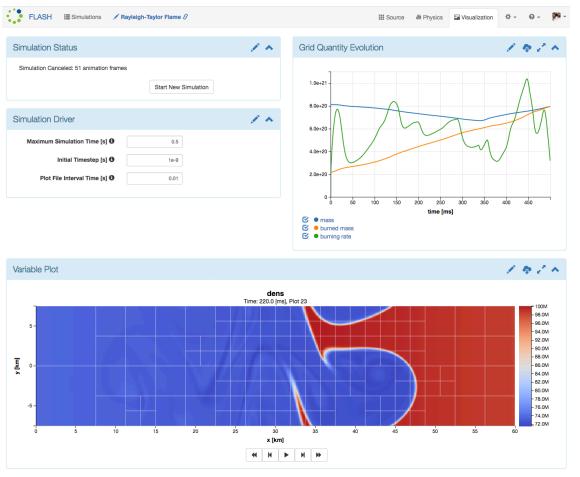


EAAC – September 17, 2019

A prototype, modular FLASH interface (1)


- Tailored interfaces for different classes of problems
 - Existing templates include pre-configured setup routines
 - Capillary discharge and Rayleigh-Taylor flame examples
 - Configure simulation geometry, species, and grid parameters

A prototype, modular FLASH interface (2)


- Tailored interfaces for different classes of problems
 - Specify physics modules and associated transport coefficients

A prototype, modular FLASH interface (3)

- Tailored interfaces for different classes of problems
 - Visualize specified plot variables and integrated grid quantities
 - Dynamic visualization updates at runtime

Making FLASH accessible through Sirepo

- Sirepo is a cloud-based platform for scientific computing
- Supported Codes include:
 - Particle Tracking: elegant, Synergia, Zgoubi,
 - Radiation: SRW (Synchrotron Radiation Workshop)
 - <u>Particle-in-cell</u>: Warp (Vacuum Nanoelectronic Devices + Plasma-Based Accelerators)
 - Electron Cooling: JSPEC
- Advantages:
 - No installation required
 - Share you work with a simple link
 - Archive and save simulations online
 - Export files for command-line execution
- Try it out at https://sirepo.com/

Conclusions

- Capillary discharge plasmas promise a breadth of applications for advanced accelerators
 - LWFA waveguide, active plasma lens, plasma de-chirper
- FLASH code benchmarked for simple capillary dynamics
 - Three phase evolution produces channel in agreement with analytic prediction
- Additional characteristics explored
 - Laser heater for sub-channel formation
 - Current/Magnetic Field aberrations observed with different species
- Development of user-friendly interface to FLASH
 - Plans to be made available online in the next year
- Future Work will consider more exotic geometries and schemes
 - 3D geometries, density downramps, Bessel laser deposition under consideration

