# Efficient 3D envelope modeling for two-stage laser wakefield acceleration experiments

### Francesco Massimo





- Context
- Modeling Laser Wakefield Acceleration with a laser envelope
- First stage LWFA simulations
- Second stage LWFA simulations
- Conclusions



### Outline

- Context
- Modeling Laser Wakefield Acceleration with a laser envelope
- First stage LWFA simulations
- Second stage LWFA simulations
- Conclusions



### Centre Interdisciplinaire de la Lumière Extrême (CILEX)







### PIC simulations need many resources



3D standard LWFA simulations: 1 mm plasma ~ 320 kcpu-hours ~ 10.2 k€ (36 years on 1 cpu)

Parallelization is mandatory but still 320 kcpu-hours ~ 13 days on 1000 cpus ...

Any trick to speed up the calculation is most welcome

## Implemented in **Smilei)**:

High Performance Computing (HPC) techniques

- Parallelization
- Smart Load Balancing
- Vectorisation

Techniques using physical approximations

- Azimuthal Fourier decomposition
- Envelope modeling

- Context
- Modeling Laser Wakefield Acceleration with a laser envelope
- First stage LWFA simulations
- Second stage LWFA simulations
- Conclusions



### Physical scales disparity in LWFA



### Laser Envelopes need less sampling points





### Envelope model: separate the laser field





## Envelope modeling has multiple advantages



More accurate laser speed



J.-L.Vay, JCP 230 (2011)

**Radiation** 

- Context
- Modeling Laser Wakefield Acceleration with a laser envelope
- First stage LWFA simulations
- Second stage LWFA simulations
- Conclusions



### CILEX 1st stage: quick envelope simulations

#### Apollon 1<sup>st</sup> Stage

### Example of simulation with the envelope model



Cile



### CILEX 1st stage: quick envelope simulations

### Apollon 1<sup>st</sup> Stage

### Possible working points studied with the envelope model

| Simulation                                               | 1    | 2    | 3    | 4    |
|----------------------------------------------------------|------|------|------|------|
| E <sub>Laser</sub> [J]                                   | 10   | 10   | 15   | 15   |
| P/P <sub>cr</sub>                                        | 18.3 | 12.0 | 22.0 | 13.3 |
| Laser w <sub>0</sub> [µm]                                | 40   |      |      |      |
| N <sub>plasma</sub> [10 <sup>18</sup> cm <sup>-3</sup> ] | 1.1  | 0.9  | 1.1  | 0.8  |
| LFWHM, Laser [fs]                                        | 20   | 25   | 25   | 30   |
| Q <sub>beam</sub> [pC]                                   | 263  | 48   | 543  | 24   |
| E <sub>peak</sub> [GeV]                                  | 870  | 740  | 930  | 1130 |
| ΔΕ/Ε (%)                                                 | 8.3  | 3.2  | 6.4  | 2.0  |
| Distance [mm]                                            | 6.3  | 7.2  | 6.5  | 7.6  |



- Simulation 2, Propagation distance = 7.2 mm
- Simulation 3, Propagation distance = 6.5 mm
- Simulation 4, Propagation distance = 7.6 mm







- Context
- Modeling Laser Wakefield Acceleration with a laser envelope
- First stage LWFA simulations
- Second stage LWFA simulations
- Conclusions



### Case Study: Multistage LWFA experiments





### **Envelope Benchmark: External injection in LWFA**

#### Comparison @15 mm of propagation

#### Longitudinal **Electron density** electric field $n_e/n_c$ 800 0.0003Envelope simulation $E_x(m_e\omega_0c/e)$ 0.004 400 0.002-0.0002 $y\left(c/\omega_{0}\right)$ 0.0000 -0.0020.0001 -400 -0.004Standard Laser simulation Standard Laser simulation Envelope simulation 0.0000 -0.006 -800 29200 30000 29600 30000 29200 29600 $x (c/\omega_0)$ $x (c/\omega_0)$ **Propagation Direction T**Standard Laser = 20 **F**Envelope

### **Envelope Benchmark: External injection in LWFA**





### Simulation of External injection LWFA

Comparison @15 mm of propagation, Preliminary Results



### 2<sup>ème</sup> Stage of Apollon,

### **Comparison between Standard PIC and Envelope PIC**





Numerical Cherenkov reduced by filtering:

- Emittance conserved
- Beam stays focused

More accurate laser speed: More accurate phase and Longitudinal phase space evolution



### **Conclusions and perspectives**

- Time explicit (non quasi-static) 3D envelope model for the laser now available in Smilei)
- Benchmarked on long second stage simulation
- Used to study possible working points for Apollon LWFA experiments

Future developments:

- Envelope model + cylindrical geometry
- Envelope model + ionization



### Acknowledgements

**Group GALOP** 



Arnaud Beck, Imen Zemzemi, A. Specka

Developers of **Smilei**)

- Arnaud Beck, Imen Zemzemi
- Frédéric Pérez, Mickael Grech
- Julien Derouillat, Mathieu Lobet

#### **Developers of ALaDyn**

- Alberto Marocchino
- Stefano Sinigardi,
- Davide Terzani



This work used computational resources of TGCC, CINES, through the allocation of resources 2018-A0010510062 granted by GENCI (Grand Equipement National de Calcul Intensif) and Grand Challenge "Irene" 2018 project gch0313 made by GENCI.

P2IO LabEx (ANR-10-LABX-0038) in the Framework "Investissements d'Avenir" (ANR-11-IDEX-0003-01) managed by Agence Nationale de la Recherche (ANR, France) provided financial support for F. Massimo



### Additional slides

### The Laser Envelope evolution: wave equation





### **Ponderomotive Equations of motion**



Ponderomotive force acts as a radiation pressure on charged particles : it expels the electrons from high-intensity zones

**F**ponderomotive

 $\begin{array}{l} \text{Motion Equations for the macroparticles (here electrons):} \\ \frac{d\bar{\mathbf{x}}_p}{dt} = \frac{\bar{\mathbf{u}}_p}{\bar{\gamma}_p} \\ \frac{d\bar{\mathbf{u}}_p}{dt} = \left( \begin{bmatrix} \bar{\mathbf{E}}_p + \frac{\bar{\mathbf{u}}_p}{\bar{\gamma}_p} \times \bar{\mathbf{B}}_p \\ - \frac{1}{4\bar{\gamma}_p} \nabla \left( |\tilde{A}_p|^2 \right) \\ - \frac{1}{4\bar{\gamma}_p} \nabla \left( |\tilde{A}_p|^2 \right) \\ 371 \end{array} \right) \end{array}$ 

Lorentz Force<br/>(plasma fields)Ponderomotive<br/>Force<br/>(laser envelope)

B. Quesnel and P. Mora,Physics Review E 58,3719 (1998)



### Electromagnetic field initialization: Relativistic electron









#### **Immobiles Species: Poisson's Equation**

$$abla^2\Phi=-
ho$$

**Relativistic Species: "Relativistic" Poisson's Equation** 

$$\left(rac{1}{\gamma_0^2}\partial_x^2+
abla_\perp^2
ight)\Phi=-
ho_\perp$$

$$egin{aligned} \mathbf{E} &= \left( -rac{1}{\gamma_0^2} \partial_x \Phi, -\partial_y \Phi, -\partial_z \Phi 
ight) \ \mathbf{B} &= rac{eta_0}{c} \mathbf{\hat{x}} imes \mathbf{E} \end{aligned}$$

Hypothesis: Negligible energy spread

If non-negligible energy spread: Repeat for each energy "slice"

J.-L. Vay, Physics of Plasmas 15, 056701 (2008)

P. Londrillo, C. Gatti and M. Ferrario, Nucl. Instr. and Meth. A 740, 236-241 (2014)

F. Massimo, A. Marocchino and A. R. Rossi, Nucl. Instr. and Meth. A 829, 378-382 (2016)

