Recent orientations in the particle-in-cell simulation software Smilei

Arnaud Beck, Laboratoire Leprince-Ringuet, CNRS/IN2P3 Imen Zemzemi, Francesco Massimo, Arnd Specka

Collaborative & User-Friendly

smileipic.github.io/Smilei

Educational resources

online documentation • tutorials

High-Performance Computing

MPI-OpenMP • load balancing • vectorization

Advanced physics modules

ionisation • collisions • strong-field QED

Advanced solvers

high-order FDTD • quasi-cylindrical • laser envelope

Derouillat et al., Comp. Phys. Comm. 222, 351 (2018)

Fine grain decomposition **exposes more parallelism** at the cost of more synchronizations.

PIC code are 'easily' parallelized using domain decomposition + Patch

Color represents the local patch computational load imbalance

 $I_{loc} = \text{log}_{10} \left(L_{loc} / L_{av} \right)$

Mitigation of performance loss

 $\textit{MPI} \times \textit{OpenMP}$

- Excellent potential speed up, very good power budget.
- Heavy constraints on data structure and algorithm.
- Difficult to use at its full extent in a PIC code.

Particles do not move so much in a single time step.

Sorting and SIMD efficiency

2 sets of operators

Particle sorting time V.S. Temperature

Particle push time V.S. number of PPC

The cycle sort is 2 to 4 times as efficient as a count sort for typical LWFA plasmas. Sorting also benefits to collisions accuracy and performance.

Adaptive vectorization performances

Bonus: free dynamic load balancing !

• Additional synchronization costs.

• Too much particle load balancing end up unbalancing other sequences in the code.

• Fine grain is not adapted to spectral methods.

• Fields diagnostics are complicated.

• Variability of performances. Dependence on patches size which adds up to many other optimization variables.

21	22	25	26	37	38	41	42
20	23	24	27	36	39	40	43
19	18	29	28	35	34	45	44
16	17	30	31	32	33	46	47
15	12	11	10	53	52	51	48
14	13	8	9	54	55	50	49
1	2	7	6	57	56	61	62
0	3	4	5	58	59	60	63

2	5
1	4
0	3

Particles decomposition

Fields decomposition

- Speeds up fields operations (Sync, Solvers, Filters ...)
- You can balance particles as much as you want with little impact on other sequences.
- Spectral solvers friendly structures.
- Exposes more parallelism and opportunities for openMP taskification.
- Caveat: A good strategy to optimize overlapping of the field decomposition with its corresponding patches is required.
- First rough estimations with scaling to only 128 MPI processes shows varying overheads of up to 7.5%.

• Robust code able to have good performances in wide range of real physics cases and for non expert users.

• Build a platform flexible enough to easily benefit from other developments.

• Contribute to code co-development via PICSAR and its coupling to SMILEI.

Fellow developpers of **Smilei**)

- I. Zemzemi E. Massimo
- J. Derouillat M. Lobet
- F. Perez M. Grech T. Vinci

GENCI

for privilegied access to computing time alocations (projects 0510062, 0607484 and Grands Challenges Irene and Jean Zay)

Funding partners

Labex P2IO • IN2P3 • Ecole polytechnique

Co-development partners

J.L. Vay • R. Lehe who supervised I.Z. contribution to PICSAR.

Users community

for feedback, ideas, contributions and encouragements

For users and developpers

Training Workshop

Next edition coming up Fall 2020 !

