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Domain decomposition into “Patches“

Fine grain decomposition exposes more parallelism at the cost of more
synchronizations.

+ Patch
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Dynamic evolution of MPI domains

Color represents the local patch computational load imbalance

Iloc = log10 (Lloc/Lav)
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Mitigation of performance loss

MPI × OpenMP
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Vectorization

Excellent potential speed up, very good power budget.

Heavy constraints on data structure and algorithm.

Difficult to use at its full extent in a PIC code.
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Sort per cell at all times

Particles do not move so much in a single time step.

Unsorted particles

Incoming particles

Sorted particles
(new array)

Count = x6 x5

Unsorted and 
sorted particles

(same array)

x5
Deleted particles: x2

a) Count sort

b) Cycle sort

cell_keys = icell icell+1 icell+2

∈ icell

Contiguous memory order

∈ icell+1

-1

cycle 1

Incoming particles
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∈ icell+2 memory copy Cycle start
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Sorting and SIMD efficiency
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The cycle sort is 2 to 4 times as efficient as a count sort for typical LWFA
plasmas.
Sorting also benefits to collisions accuracy and performance.
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Adaptive vectorization at play

A. Beck Smilei 9 / 17



Adaptive vectorization performances
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Bonus: free dynamic load balancing !
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Patches are good but ...

Additional synchronization costs.

Too much particle load balancing end up unbalancing other sequences
in the code.

Fine grain is not adapted to spectral methods.

Fields diagnostics are complicated.

Variability of performances. Dependence on patches size which adds up
to many other optimization variables.
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Single Domain Multiple Decompositions

Particles decomposition Fields decomposition
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SDMD Interests and caveat

Speeds up fields operations (Sync, Solvers, Filters ...)

You can balance particles as much as you want with little impact on
other sequences.

Spectral solvers friendly structures.

Exposes more parallelism and opportunities for openMP taskification.

Caveat: A good strategy to optimize overlapping of the field
decomposition with its corresponding patches is required.

First rough estimations with scaling to only 128 MPI processes shows
varying overheads of up to 7.5%.
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Conclusions

Robust code able to have good performances in wide range of real
physics cases and for non expert users.

Build a platform flexible enough to easily benefit from other
developments.

Contribute to code co-development via PICSAR and its coupling to
SMILEI.
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