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Essence in brief Stages of wake evolution

We study long-term evolution of the plasma wakefield after passage of a dense electron bunch (in the blowout regime). Broken wakefield,

) . . ) . Plasma expansion h ti Wakefield Elect bunch
Experiments at FACET (optical shadowgraphic measurements) show rapid plasma expansion at a nearly constant speed. P charge separation ) ectron bunc

Simulations quantitatively agree with measurements and uncover mechanisms of wakefield energy conversions and plasma expansion: \f I j
ofirst, the wave breaks, and its energy goes mostly to fast (tens of keV) electrons, which tries to escape from the plasma; gy [ e—— -_,
ofast electrons create charge separation electric field, which holds most electrons near the plasma and halves their total energy |
«clectric field accelerates ions radially, and eventually ions acquire most of the plasma energy M S

.radially moving fast ions ionize the surrounding neutral gas (impact ionization), create low-density plasma there and make these regions t<1.5ns,v~10°m/s t<40 ps t~1ps

accessible to warm plasma electrons The plasma (dark region on  The wave breaks after few The electron bunch ionizes the

. . . . . .. ) ) the image) expands radially periods, creating high-energy lithium, creates a plasma cylinder
«growth of electron population triggers near-exponential plasma density growth through electron impact ionization (mainly two-step process electrons (up to 100s keV) and  (radius ~ 40 pm), and drives the

through excited states). charge separation fieldsto ~ strong wakefield in it (nearly full
keep plasma quasi-neutrality  blowout)

90% of the wake’s initially deposited energy remains within the plasma column for over a nanosecond, and major part of this energy is kinetic
energy of radially moving ions.
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Initial ionization Energy budget
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A moving front of fast ions
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Relative contributions of different ionization channels. Dominates: time [ps]

t <20 ps: electron impact (before ions gain energy)

4. Growth of electron population 3. Once ions appear at a given location, more electrons 20 ps <t <200 ps: ion impact Charge-separation field comes to equilibrium with
triggers near-exponential plasma come, including lower-energy plasma electrons with large 200 ps <t <500 ps: single-step electron impact electron distribution (energies equal), ions accelerated)
density growth. impact-ionization cross sections, and speed-up ionization. t > 500 ps: two-step electron impact
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The wave breaks, most of the energy is in hot electrons

Initial wakefield energy is in fields and in electron motion

T CI ic I I t i I S Lo-14 lonization Cross-sections " Excitation Cross-sections

Fields and motion of charged particles: main effect that wakefield codes simulate, well benchmarked probability 1 : in the first ~ 20 ps (region 4). The expanding plasma column retains the rest without
) noticeable attenuation throughout the remainder of the simulated period. Radially

propagating electrons (2) and fields (3) carry most of the latter energy initially

(20 < At £40 ps), but transfer ~ 85% of it to radial ion motion (1) within 300 ps.

Hot electrons carry ~ 10% of the energy deposited in the original wake to the walls

w =0(E,) v, n, At

lonization by the driver: Ammosov-Delone-Krainov (ADK) model [Sov. Phys. JETP 64, 1191 (1986)].

Coulomb collisions: Takizuka-Abe model % cell | particles in a cell

[J. Comp. Phys. 25, 205 (1977)] > grouped in pairs
modified to include relativistic particles and scatter on

[F. Perez, et al., Phys. Plasmas 19, 083104 (2012)]. the partners

Cross-section, rm?

Spontaneous emission
Impact ionization and excitation by plasma particles: cross-sections from IAEA Aladdin database for electron time ~ nanoseconds,

} -19 L } [ [
impact and from theoretical model [I. D. Kaganovich, et al., New J. Phys. 8, 278 (2006)] for ion impact. neglected 1 0 . IVI O re I n fO . a rX I V .
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