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We propose a method to generate isolated relativistic terahertz (THz) pulses using a high-
power laser irradiating a microplasma waveguide (MPW). When the laser pulse enters the
MPW, high-charge electron bunches are produced and accelerated to ~100 MeV by the

transverse magnetic modes (TMM). A substantial part of the electron energy is transferred
to THz emission through coherent diffraction radiation as the electron bunches exit the
MPW. We demonstrate this process with three-dimensional particle-in-cell simulations. The
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