Towards High-gradient Particle Accelerators from Carbon Nanotube Arrays

A. Perera, G. Yadav, J. Resta-Lopez, *Cockcroft Institute and the University of Liverpool, UK*

Charged particle acceleration using solid-state nanostructures is attracting new attention in recent years as a method of achieving ultra-high acceleration gradients, in principle of up to ~1 TV/m [1]. The use of carbon nanotubes (CNT) has the potential to enable limitations of using natural crystals, e.g. in channeling aperture and thermo-mechanical robustness, to be overcome.

Here we present preliminary results of ongoing work in the development of a new, 3D model of beam-CNT and beam-CNTarray interaction using modification to the particle-in-cell code *EPOCH* [2].

1. Proposed Setup

- High density of CNT wall leads to ultra short-wavelength (~100nm) accelerating fields
- Bunch compressor chicane for ~0.1 ps bunches (multiple wavelengths)
- Even shorter bunches at sub-fs level from bunch slicing in magnetic chicane with a collimator

Short and long bunches

(100fs up to 200ps)

Magnetic chicane

Modulation of bunch length

Typical bunch parameters $200 \,\,\mathrm{MeV}$ Energy 1%Energy spread 5×10^6 Bunch population rms radius $168(0.1c/\omega_p) \text{ nm}$ $840(0.5c/\omega_p)$ nm rms length 10^{25} m^{-3} peak density VACUUM array CNT Driving bunch VACUUM Plasma etched CNT structure Imaging station

- We use modified 3D EPOCH [2] code to model nanotube wall electrons as plasma in a static positive 'jellium' background
- Electron currents in walls restricted to longitudinal and azimuthal directions

4. Expt. Proof-of-Concept Possibilities

30

z [μm]

25

35

VeV 250 Me 2% ±1% า-mrad ≤1 mm-n	eV 150 MeV 0.5%	400-1250 MeV 0.02%
2% ±1% n-mrad ≤1mm-n	0.5%	0.02%
n-mrad ≤1 mm-n		
	nrad 1 mm mrad	1 1-3 mm mrad (proj.)
5 ps 0.1-0.25 (short pu	5 ps 1 um (0.0033 Ilse)	ps) 50-6000 fs
nC 0.1-0.25	nC 0.03 nC	50-800 pC
7 ns	-	-
226 1	-	-
5] Hz 10 Hz	-	1-10 Hz (macro) 0.04-3 MHz (micro)
5	226 1] Hz 10 Hz	226 1 -] Hz 10 Hz -

5. Ongoing work

- Further investigation and extension of rigid-wall single-nanotube model to full CNT array
- Addition of CNT-electron scattering and other solid-state effects

35

30

z [μm]

- Development of a theoretical framework for EM fields and operation of CNT-array in coupled linear regime (most likely to be used with existing beamlines)
- **Optimization studies** of wall-thickness, nanotube radius, crystalline geometry and array properties

1] Shin, Y. M. (2017). Ultra-high gradient channeling acceleration in nanostructures: Design/progress of proof-of- concept (POC) experiments. AIP Conference Proceedings , 1812(060009). doi: 10.1063/1.4975876.

Arber, T. D. (2015). Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Physics and Controlled Fusion, 57(11), 113001. doi: 10.1088/0741-3335/57/11/113001

25

javier.lopez@cockcroft.ac.uk

[2]

Work supported by Science and Technology Facilities Council grant ST/P006752/1.