

Stability analysis of plasma photocathode produced ultrahigh brightness electron beams

Fahim A. Habib^{1,†}, T. Heinemann^{1,2}, A. Knetsch², P. Scherkl¹, D. Ullmann¹, A. Beaton¹, G.G. Manahan¹, A. Sutherland^{1,3}, G. Kirwan¹, L. Boulton^{1,2}, A. Nutter^{1,4}, D.L. Bruhwiler⁵, J. Cary⁶, M. Hogan³, V. Yakimenko³, J.B. Rosenzweig⁷ & B. Hidding¹ ¹University of Strathclyde, SUPA, & The Cockcroft Institute, ²Deutsches Elektronen Synchrotron (DESY), ³SLAC National Accelerator Laboratory ⁴Helmholtz-Zentrum Dresden-Rossendorf (HZDR), ⁵RadiaSoft LLC, ⁶University of Colorado Boulder & Tech-X Corporation, ⁷University of California.

[†]ahmad.habib@strath.ac.uk

Abstract

We report on demonstration of plasma photocathode in particle-driven Wakefield acceleration (PWFA) obtained within the "E-210: Trojan Horse PWFA" collaboration at SLAC National Accelerator Laboratory FACET. Further, we identify key experimental limitations and study them in a systematic jitter analysis utilizing 3D Particle-In-Cell (PIC) code. The results from this study indicate that the electron beam parameter shot-to-shot stability can be comparable to the state-of-the-art rf-based accelerators. These findings are very encouraging for the upcoming experimental campaigns at SLAC FACET-II: e.g. "E-310: Trojan Horse-II" and "E-313: Multibunch dechirper for ultrahigh 6D brightness beams".

Motivation

The plasma photocathode particle-driven Wakefield accelerator (TH-PWFA) is a promising path towards electron beams with ultrahigh 6D-brightness, multi-GeV energies and sub-% energy spreads in a single PWFA acceleration stage [1,2]. This electron beams with superior quality are opening the path towards key applications such as XFEL, ICS, and HEP [2,3,4].

Plasma photocathode injector

UCLA

Aradiasoft

SLAC

radiabeam

T E C H N O L O G I E S

TECH-X

E-210: Demonstration of 90° plasma photocathode injection

- Demonstration of two injection methods in PWFA for the first time [5]
- Plasma torch injection: All-optical density downramp injection
- Trojan Horse injection: Plasma photocathode injection in 90° geometry
- Hydrogen plasma channel width limits PWFA operation point ($\lambda_p = 98 \ \mu m$)
- Plasma channel radius r_c is smaller than the blowout radius R_b in some parts

Technical limitations: Driver beam, plasma channel and injection laser jitter

Wakefield changes from accelerating to deaccelerating phase at the witness

• Wakefield evolves because of plasma channel width variation

beam trapping position \rightarrow Limits witness beam energy gain [5]

- Two component noble gases (Hydrogen/Helium) are used to decouple acceleration from injection
- Both regimes accessible in the same set up by tuning laser energy and timing [5]

Stability analysis of plasma photocathode towards FACET-II experiments and beyond

- Wide plasma channel (e.g. channel radius $r_c \ge 2 \times R_b$) allows stabile PWFA operation at longer plasma wavelength (e.g. $\lambda_p \ge 250 \ \mu m$) [3]
- Generous injection laser jitter values are assumed; Misalignment: ±10µm, Timing jitter: ±30 fs, normalized laser amplitude jitter: ±2%
 For simplicity an uniform statistical probability is considered
 → A Gaussian statistical probability is a better approximation
- Stabile witness beam acceleration over meter distances \rightarrow multi-GeV beams
- Longer plasma wavelength relaxes alignment and timing requirements
 - \rightarrow Impact on witness beam properties is significantly reduced
- Witness beam energy stability at sub-% level may be possible

Publication embargo

TH-PWFA witness beam energy stability considering various jitter contributions

Conclusion

- Plasma torch and Plasma photocathode injection work in PWFA even under sub-optimal conditions

 → Path towards ultra-high quality electron beams
- Plasma channel width limits energy gain and witness beam parameter stability
- Wider plasma channels allow stable acceleration over meter distance
- Longer plasma wavelength may enable sub-% energy spread beams with nm

• The 6D-brightness combines key beam properties such as: beam peak current, normalized emittance and energy spread

$$B_{6D} = \frac{I_p}{\epsilon_{n,x} \epsilon_{n,y} 0.1\% BW}$$

Publication embargo

TH-PWFA witness beam 6D brightness stability considering various jitter contributions

- Ultra-high 6D brightness jitter of the witness beam is comparable to modern LINACs [6]→ Promising for key applications such as XFEL, ICS and HEP.
- Technical improvement will further enhance electron output stability
- Results are encouraging towards FACET-II and future experiments

References & Acknowledgment

[1] Hidding, B. et al., Phys. Rev. Lett. 108, 035001(2012)
[2] Manahan, G. G. & Habib, A. F. et al., Nat. Commun. 8 (2017): 15705
[3] Habib, A. F. et al., Proc. SPIE 11110 (2019) doi: 10.1117/12.2530976
[4] Hidding, B., Manahan, G. G., Habib, A. F., US Patent App. (2019): 16/341,039
[5] Deng, A., Karger, O. S.,...& Habib, A. F. et al., Nature Physics (2019): 1-5

acknowledge the support by DFG Emmy-Noether program, RadiaBeam Technologies (DOE contract DE-SC0009533).

EPSRC (Grant No. EP/N028694/1), H2020 EuPRAXIA (Grant No. 653782) and LASERLAB-EUROPE Grant No. 284464.