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Abstract

We report on the recent experimental results obtained at the Laser Light lon beam-Line using both flat and nanostructured thin foil targets,
where accelerated ions were characterized using a wide range of detection techniques, optimized for the severe conditions typical of a laser-
plasma acceleration environment. Advanced targets are also being explored with special attention to nanostructured targets, including nano-
pillars and porous materials that are used for their role in modifying the electron distribution function of fast electrons. Preliminary results and
numerical simulations show that a key role is played in these measurements by the level of plasma filling gaps and cavities in the target, before
the ultrashort laser pulse hits the target. In view of the applications, we also focus on the shot by shot fluctuations of the ion source,
@/estigating the possible role of target imperfections, laser-beam energy, focal spot intensity, pulse duration and pointing stability. /
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