Plasma density profile measurements for ultra-short high power laser
beam guiding experiments at SPARC LAB
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Abstract:

The External injection, i.e a drive laser exciting a plasma wake followed by an electron bunch, is a promising method to achieve high accelerating gradients and to control the beam properties. The energy gain of an electron via the wakefield is proportional to
the product of the accelerating field multiplied by the effective propagation distance of the laser, which is approximately equal to nZ,, where Z; is the diffraction length of the laser pulse (Rayleigh length), typically in the millimetre range. Therefore, in order to
bring the electron energy to the order of the GeV, a longer propagation length is required, which can be obtained by guiding the laser pulse in a wave-guide. In the case of SPARC_LAB, a 500 um diameter hydrogen-filled capillary discharge is used. To guide the
laser beam it is necessary to act on the refractive index of the plasma, depending on its density. Therefore, to correctly match the laser pulse and the guide, time-resolved measurements of the electronic density profile inside the capillary are essential: in this
case a spectrometer was used to detect the gas emission line enlargement produced by the Stark effect.

In this work measurements of the trend over time of longitudinal and transverse profiles of plasma density within the capillary used for guiding experiments are presented, compared with the results of MHD simulations based on initial gas profiles obtained in
OpenFOAM and on the real discharge profile. Preliminary tests of laser guiding are also shown, taking particular care of the discharge process, detecting the behaviour of the laser beam at the exit of the capillary with respect to the discharge current value.

LASER GUIDING AND PLASMA DENSITY: SETUP AND MEASUREMENTS

Motivation:

Laser guiding tests are of fundamental importance for the external injection configuration; in fact it is essential to study the laser-plasma matching, according to the type of capillary used and to the type and the intensity of
discharge generated inside of it. For this reason, we study the plasma density during and after the discharge, analyzing the longitudinal and transverse profiles, with the aim of obtaining a temporal zone of longitudinal uniformity
of plasma density along the whole capillary, and with a transversal parabolic distribution. In this plasma zone it is possible to guide a laser pulse, matched with the guide radius and with the plasma density difference axis-walls.
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Measurements of the enlargement of the emission lines of the gas, caused by the Stark effect. The
electric field of electrons and ions generates a spectral enlargement dL ~ an,%/>.

The system uses a first lens that reproduces the longitudinal or transverse profile of the capillary,
transported by an optical system on the slit of the spectrometer, on the diffractive grating and a second
lens that, subsequently, conveys the scattered light on a CCD that must be equipped with an intensifier
to increase the signal/noise ratio. In this way it is possible to make a measurement resolved in time of
the electronic density profile present within the capillary.

The laser is focused with a 50 cm lens at the entrance of the
capillary. The imaging system is composed of a 20 cm lens,
joined to a CCD with a microscopic objective.
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OpenFOAM AND MHD SIMULATIONS
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Future developments: In order to study the best laser-plasma matching conditions, new simulations, Stark broadening measurements and imaging measurements of laser profiles at the output of the capillary in the guiding time

window will be carried out, even on capillaries with diameters of 300 um and 700 um . A study on the density of the neutral gas and the plasma density at the output of the capillary will be performed to understand the effect it has on a
high-power laser pulse focused at the entrance to the capillary. Guiding tests of the full power laser pulse with the setup in this way chosen will follow, inside the interaction chamber of the Flame laser. After that the first experiments of
external injection in Flame with electrons produced by self-injection will begin, then the experiment of external injection using the high brightness electron beam of SPARC as witness beam for the plasma wakefield acceleration will start.




