High intensity laser hybrid guiding for electron acceleration
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Objective: To control the guiding of a high intensity laser pulse over large Reap

distances (L > 10Z) in a Laser Plasma Accelerator (LPA) stage. An hybrid " Yizs um Ratio Of,the den,s'ty at th_e Cap'”a,ry wall W_'th the
h f guiding is studied that combines a parabolic plasma channel with ~ ° solidline : wy =505 Hm density on axis for various capillary radius R,
>¢ em.e © 5“'_ 5 _ _ P _ P o s o 71 \ dashed line : w,= 64.5 pm and laser waist w|, as given by the plasma
reflections inside a capillary tube. This scheme can yield an efficient guiding at < 6_;4 channel best matched guiding condition. Lower
low plasma densities with a small capillary radius. It requires less energy to 8 ] values of R, lead to a lower plasma kinetic
create the plasma channel, generating less damage at the capillary walls and % ,1 \ \ energy and even to a lower average density.
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facilitating the way to operate at high frequencies. We present results of 3 :m \ Therefore_l,l less e“ergy h‘TS tIO the dISS'Ipated aﬁlthe
simulations performed with the WAKE-EP code of plasma generation and laser 24 2 ¥ — capillary walls. Similarly, for a given capillary
| | : 1 GeV insid N he of | h ¥ B radius, a larger laser waist yields in a reduced
!ofasma acceleration up to eV inside a capillary tube of an electron beam R P L A AL e olasma kinetic eneray.
injected at 150 MeV. Neo (cM™)
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Step I: Generation of a initial plasma state i: —Plasma channel 2,=2 ‘ ‘ Evolution of the maximum intensity on axis
Reflections at the capillary wall guide a first laser pulse at moderate intensity [ = 1.2 during propagation inside a capillary (R¢qp =
10 —10*" W/ __,, ionizing the gas (H, or He) inside the tube. iér e 125 um) with a plasma channel obeying best
094\ N\ matched conditions for a laser waist of 50.5
= o1\ / \ um. Nearly constant intensity on the axis is
@ 0.6 \ / \\ obtained in case of ay = 1. At higher laser
g:ji \ g \ intensities (ap=2) relativistic self-focusing plays
Step I1: Hydrodynamic expansion of plasma (as a 03 \\\ / \\ a significant role.
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Step III: High intensity pulse guiding by plasma channel £ /\ | s & { S
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First step: The laser of moderate intensity is guided by the index of refraction change | \ ! ] \ |
from gas/plasma to wall under an angle close to grazing incidence. . | 104 = \ 06
Second step: plasma is expanding either as a shock wave in case of a plasma column = \ £ )
(He case) or through thermal relaxation in case of full ionized tube (H,) case. After R A A 0 e 03
some delay, the transverse density profile near the axis becomes parabolic : n,(r) = Cp (WM) &g (HM)
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o (1 t Ten %) With 7ep, = Zgy/Te/Nc , N being the critical density Properties of the beam electrons at the exit of a 10 cm long capillary with R4, =
Third step: transverse variation of electron density changes the refractive index n = 125mm. The laser beam has a Gaussian radial profile with w; = 50.5 pm and ay=1. The
1 (@2 2 1 n.(r)e? I the b o it { the hich _ electrons bunch is injected at 150 MeV, with a normalized phase emittance of 1 um, and a
B (w_L) T 2ymegow? n the best matching conditions n~1, the high intensity transverse size of 2 um. Left axis: ratio of trapped electrons 1.4y, red line; slice dispersion in

laser] ~ 2 —5 x 1018 W/ .2 can be guided over large distances. energy (6E/E)4, green line; slice normalized phase emittance (&, ) (um), blue line. Right
axis: slice average energy Ej;, black curve. Figure a) Tryypm = 45fs, b) Trywpm = 132fs
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Laser prepulse propagation in H, and He
R.qap = 125um 4.1 142 1.2 0.1 0.75 0.73
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e Density H, 1,=10 W/cmllis—lcm Trwhm = 45fs
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” - 02500 Main properties of electron beam injected at 150 MeV and accelerated up to 1 GeV in the
150 optimized configuration. Columns from left to right : laser energy in Joule, length of the
capillary in mm, average of the total and slice dispersion in energy in percent and total and
0-0 0000 average of the slice normalized phase emittance in um.
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105 pensity e lp=b0™ Wiem* Zz=1 cm e A1 GeV accelerator stage configuration for LPA have been proposed using an hybrid
l guiding scheme inside a capillary tube
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100 -  Main objective was to reduce the capillary tube radius in order to reduce the energy
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required to generate the plasma channel, and so to limit the damage on the capillary walls
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= ® * In order to limit diffraction effects at the entrance of the capillary, the laser electric field at
= [ the capillary walls must also be minimized.
e e Qur simulations results show that for the Gaussian laser to achieve such conditions
- 05000 capillary radius must be at least 2.5 times larger than the laser waist (e.g. wy =
lo.zsoo 50.5 um, Rcap ~ 125 ‘le)
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2D maps of electron density after interaction with the laser pre-pulse. Top figure: gas =
H,, ng= 10" ¢cm™3,R.qp = 125um, Iy = 10*° W /cm? . Bottom figure: gas = He, ny=
107 em™3, Ryqp = 125um, Iy = 10V W /cm?.




