



Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

# Spatial autocorrelation study for laser beam quality estimation

Jessica Scifo A. Del Dotto, M. Ferrario, R. Pompili, F. Villa On behalf of SPARC\_LAB collaboration

4th European Advanced Accelerator Concepts Workshop 2019, 15-21.09.2019, Isola d'Elba, Italy



- Motivation
- Analytical definition of spatial autocorrelation index
- Autocorrelation estimation and GPT electron beam emittance evaluation for:
  - Meshed beam
  - Real laser spots
- Conclusions



> Motivation of this study: <u>*High Brightness electron beam*</u>



- Contributions to emittance degradations come from electromagnetic fields' nonlinearity which can be reduced using a <u>transversally and longitudinally uniform</u> <u>beam</u>.
- Aim of this work: <u>To find an additional parameter able to evaluate the</u> <u>transverse laser beam uniformity</u>



Given a beam spot, represented by a matrix NxM, we can evaluate:





#### Analytical definition of spatial autocorrelation index



 $a_{iih}$  is the mean of the samples localized around the main sample  $a_{ii}$ :

$$a_{ijh} = \frac{1}{(2h+1)^2 - 1} \left[ \sum_{l=-h}^{h} \sum_{m=-h}^{h} a_{i+l \ j+m} - a_{ij} \right]$$



#### Non uniformity

$$\operatorname{var}(a) = \frac{1}{T} \sum_{i=1}^{N} \sum_{j=1}^{M} (a_{ij} - \langle a \rangle)^2$$

<u>variance</u>



<u>mean</u>

where T=NM.

$$\sigma_a = \sqrt{\operatorname{var}(a)}$$
 Standard deviation

Standard deviation  $\sigma_a$  describes the contrast between spots in an image:  $\sigma_a$ ->0 means the image is uniform



#### How non uniformity is distributed

The index  $\Lambda$  of spatial autocorrelation is defined as:

$$\Lambda(a,h) = \frac{\operatorname{cov}(a,h)}{\sigma_a^2}$$

with 
$$-1 \le \Lambda \le 1$$

where cov(a,h) is the covariance matrix, defined as:

$$\operatorname{cov}(a,h) = \frac{1}{T} \sum_{i=1}^{N} \sum_{j=1}^{M} (a_{ij} - \langle a \rangle) \cdot (a_{ijh} - \langle a \rangle)$$

The quantity covariance answers the question whether <u>a sample and its neighbour are at the same time different or not</u> <u>from the mean</u>



# Autocorrelation estimation of meshed beam



> The charge distribution extracted from the cathode has been modelled as a sine and cosine function having a frequency *n* and a charge intensity  $\delta$ 

$$\rho(i,j) = \rho_0(1+\delta\cos k_n i)(1+\delta\cos k_n j)$$

$$k_n = \frac{2\pi n}{R}$$

with *R* is the beam radius,  $\rho_0$  is the normalization constant.





## **Autocorrelation estimation**



## GPT simulation with meshed beam

#### **GPT Parameters:**

- E<sub>RF</sub>= 115MV/m
- Working RF phase=30°
- Laser pulse length=2ps rms (Gaussian profile)
- Laser radius =500 μm (Flat top profile)
- E= 5MeV Electron beam energy
- Bunch charge = 50pC
- $\epsilon_{intr} = 0.55 \,\mu m/mm$  (normalized intrinsic emittance)
- I<sub>picco</sub>~14.5 A
- Particles number=50000
- Mesh number: N<sub>x</sub>=N<sub>y=</sub>80, N<sub>z</sub>=50







# Electron beam emittance versus autocorrelation length (meshed beam)

- $\checkmark$  <u>ε<sub>0</sub> = 0.55 μm/mm (value for the ideal laser spot image)</u>
- From the GPT simulation we have extrapolated the beam emittance value at about 1 cm from the photocathode surface





# Autocorrelation estimation of real laser spots



### Real laser spots and autocorrelation estimation



Laser 2 Mean= 0.39 **σ**=0.14



Laser 3 Mean= 0.25 σ=0.07



Laser 4 Mean= 0.32 **σ**=0.10



Laser 5 Mean=0.33 σ=0.13



Laser 1 Mean= 0.135 **σ**= 0.05

J. Scifo



## GPT simulation with real laser spots

#### **GPT Parameters:**

- E<sub>RF</sub>= 115MV/m
- Working RF phase=30°
- Laser pulse length=2ps rms (Gaussian profile)
- Laser radius =500 μm (Flat top profile)
- E= 5MeV Electron beam energy
- Bunch charge = 50pC
- $\epsilon_{intr} = 0.55 \,\mu m/mm$  (normalized intrinsic emittance)
- I<sub>picco</sub>~14.5 A
- Particles number=50000
- Mesh number: N<sub>x</sub>=N<sub>y=</sub>80, N<sub>z</sub>=50







# Electron beam emittance versus autocorrelation length (real laser spots)

- $\checkmark$  <u>ε<sub>0</sub> = 0.55±0.02 μm/mm (value for the ideal laser spot)</u>
- From the GPT simulation we have extrapolated the beam emittance value at about 1 cm from the photocathode surface

| Real laser spot | ε (μm)    | ε/ε <sub>0</sub> | (h/R)* |
|-----------------|-----------|------------------|--------|
| Laser 1         | 0.62±0.02 | 1.13±0.06        | 0.218  |
| Laser 2         | 0.59±0.02 | 1.08±0.06        | 0.166  |
| Laser 3         | 0.58±0.02 | 1.04±0.06        | 0.168  |
| Laser 4         | 0.58±0.02 | 1.06±0.06        | 0.166  |
| Laser 5         | 0.59±0.02 | 1.08±0.06        | 0.166  |



### Conclusions and to do list

• The standard deviation determines the contrast while the autocorrelation index determines how the non-uniformity are distributed

• They describe the laser beam quality, concerning the uniformity, and they give an idea of the emittance growth due to the laser beam degradation

• <u>The parameter (h/R)\* is a good estimator of the beam quality since it is strictly</u> <u>correlated with beam emittance at the emission</u>!

- Future directions:
  - o experimental emittance measurements with masks
  - systematic study with larger laser dataset





## Thank you for your attention