Future perspectives on short wavelength FELs

Agostino Marinelli

Accelerator Research Division

SLAC National Accelerator Laboratory

Intro on FEL physics and FEL R&D

Attosecond pulses

Seeded FELs

Future R&D

Opportunities for advanced accelerators

DISCLAIMER: A lot of work being done, can't possibly include everything... I will focus on experimental progress. I am not immune to bias...

The X-Ray Free-Electron Laser

X-FEL shares properties of conventional lasers:

-High Power (up to 100s GW) -Short Pulse (0.2-100 fs) -Narrow Bandwidth (~0.1% to 0.005%) -Transverse Coherence

SLAC

First lasing and operation of an ångstrom-wavelength free-electron laser

P. Emma^{1*}, R. Akre¹, J. Arthur¹, R. Bionta², C. Bostedt¹, J. Bozek¹, A. Brachmann¹, P. Bucksbaum¹,
R. Coffee¹, F.-J. Decker¹, Y. Ding¹, D. Dowell¹, S. Edstrom¹, A. Fisher¹, J. Frisch¹, S. Gilevich¹,
J. Hastings¹, G. Hays¹, Ph. Hering¹, Z. Huang¹, R. Iverson¹, H. Loos¹, M. Messerschmidt¹,
A. Miahnahri¹, S. Moeller¹, H.-D. Nuhn¹, G. Pile³, D. Ratner¹, J. Rzepiela¹, D. Schultz¹, T. Smith¹,
P. Stefan¹, H. Tompkins¹, J. Turner¹, J. Welch¹, W. White¹, J. Wu¹, G. Yocky¹ and J. Galayda¹

Philip H. Bucksbaum; Nora Berrah; *Physics Today* **68**, 26-32 (2015)

SLAC

Net energy exchange between electron and wave

XFELs of the World

We define X-rays as anything around or above carbon K-edge (280 eV)

David Attwood Soft X-Rays and Extreme Ultraviolet Radiation Cambridge University Press 1999

Why X-Rays?

SLAC

X-ray FELs are a revolutionary technology. We are still learning how to best use them.

FEL R&D is geared towards:

- 1) Making things a little better for everyone (i.e. improve spectral brightness, peak power)
- 2) Making things a lot better for a few people (targeted R&D: attosecond FELs, two-colors, polarization control)

In my experience doing something new is easier than doing something better...

Recent breakthroughs have come through strong collaboration between users and accelerator experts.

My dream: educating the next generation of FEL physicists to be users AND machine experts.

One Machine, Many FELs!

SLAC

Accelerator is the most flexible device used in the experiment! Accelerator physicist in an excellent position to drive new science...

Status of FEL R&D

Status of FEL R&D

Attosecond Pulse

Laser Pump-X-ray Probe Experiments

Jitter is dominant contribution at LCLS (150 fs rms jitter) Measure T at every shot!

Harmand, M., et al. Nature Photonics 7.3 (2013): 215

New FELs showing ~10-20 fs jitter with no time-sorting (PAL and XFEL)

Kang, Heung-Sik, et al. Nature Photonics 11.11 (2017): 708.

X-ray Pump/X-ray Probe

$$\lambda_{1,2} = \lambda_w \frac{1 + K^2}{2\gamma_{1,2}^2}$$

Allaria, E., et al. *Nature communications* 4 (2013): 2476. Marinelli, A., et al. *Nature communications* 6 (2015): 6369. Petralia, A., et al. *Physical review letters* 115.1 (2015): 014801.

Ultrafast Timescales

XLEAP: X-ray Laser-Enhanced Attosecond Pulse Generation

SLAC

J. Duris, S. Li et al. to be published in Nature Photonics

Collaboration: SLAC (AD, LCLS, PULSE), ANL LMU, Imperial, Max Planck, U. Kassel, TU Dortmund, TU Munich

-Energy modulation from resonant radiationelectron interaction

-Compression with small chicane~10 kA in 1 fs

-Sub-fs X-ray pulse in undulator

XLEAP Streaking Measurements

Scientific Impact

J. O'Neil, J. Cryan, In Preparation

COST PER PHOTON 1000 TIMES CHEAPER FOR FELS!!

J. O'Neil, J. Cryan, In Preparation

Seeded FELs

Temporal Coherence of SASE (or Lack Thereof...)

-SLAC

Solutions

SLAC

Seeding: Establish phase coherence by triggering instability with a coherent pulse.

Self-Seeding

Harmonic Generation

Schneidmiller, E. A., and M. V. Yurkov. "Harmonic lasing in x-ray free electron lasers." *Physical Review Special Topics-Accelerators and Beams* 15.8 (2012): 080702.

Wu, Juhao, et al. "X-ray spectra and peak power control with iSASE." (IPAC 2013): WEODB101.

McNeil, B. W. J., N. R. Thompson, and D. J. Dunning. "Transform-limited X-ray pulse generation from a high-brightness self-amplified spontaneous-emission free-electron laser." *Physical review letters* 110.13 (2013): 134802.

Xiang, Dao, et al. "Purified self-amplified spontaneous emission freeelectron lasers with slippage-boosted filtering." *Physical Review Special Topics-Accelerators and Beams* 16.1 (2013): 010703.

Schneidmiller, E. A., et al. "First operation of a harmonic lasing selfseeded free electron laser." *Physical Review Accelerators and Beams* 20.2 (2017): 020705.

Solutions

SLAC

Seeding: Establish phase coherence by triggering instability with a coherent pulse.

Self-Seeding

Harmonic Generation

Slippage boosting: Establish phase coherence by enhancing slippage.

Chicane

Undulator module

Undulator module

Chicane

Schneidmiller, E. A., and M. V. Yurkov. "Harmonic lasing in x-ray free electron lasers." *Physical Review Special Topics-Accelerators and Beams* 15.8 (2012): 080702.

Wu, Juhao, et al. "X-ray spectra and peak power control with iSASE." (IPAC 2013): WEODB101.

McNeil, B. W. J., N. R. Thompson, and D. J. Dunning. "Transform-limited X-ray pulse generation from a high-brightness self-amplified spontaneous-emission free-electron laser." *Physical review letters* 110.13 (2013): 134802.

Xiang, Dao, et al. "Purified self-amplified spontaneous emission freeelectron lasers with slippage-boosted filtering." *Physical Review Special Topics-Accelerators and Beams* 16.1 (2013): 010703.

Schneidmiller, E. A., et al. "First operation of a harmonic lasing selfseeded free electron laser." *Physical Review Accelerators and Beams* 20.2 (2017): 020705.

Externally Seeded FELs

Proposed and demonstrated

by L.H. Yu at BNL

High-Gain Harmonic-Generation Free-Electron Laser

L.-H. Yu^{1,*}, M. Babzien¹, I. Ben-Zvi¹, L. F. DiMauro¹, A. Doyuran¹, W. Graves¹, E. Johnson¹, S. ... + See all authors and affiliations

External Seeding

Yu, L-H., et al. "High-gain harmonic-generation free-electron laser." *Science* 289.5481 (2000): 932-934.
 Lambert, G., et al. "Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light." *Nature physics* 4.4 (2008): 296
 Stupakov, Gennady. "Using the beam-echo effect for generation of short-wavelength radiation." *Physical review letters* 102.7 (2009): 074801.
 Xiang, D., et al. "Demonstration of the echo-enabled harmonic generation technique for short-wavelength seeded free electron lasers." *Physical review letters* 105.11 (2010): 114801
 Allaria, E., et al. "Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet." *Nature Photonics* 6.10 (2012): 699.
 Allaria, E., et al. "Two-stage seeded soft-X-ray free-electron laser." *Nature Photonics* 7.11 (2013): 913.
 Zhao, Z. T., et al. "First lasing of an echo-enabled harmonic generation free-electron laser." *Nature Photonics* 6.6 (2012): 360.
 Hemsing, E., et al. "Echo-enabled harmonics up to the 75th order from precisely tailored electron beams." *Nature Photonics* 10.8 (2016): 512.

9) Grattoni, Vanessa, et al. "Status of Seeding Development at sFLASH." (2018): MOP042.
10) Ribič, Primož Rebernik, et al. "Coherent soft X-ray pulses from an echo-enabled harmonic generation free-electron laser." *Nature Photonics* (2019): 1.

MORE EXPERIMENTS COMING FROM FLASH!!

nature

b

Wavelength (nm)

Self-Seeding

SLAC

Feldhaus, J., et al. "Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL." *Optics Communications* 140.4-6 (1997): 341-352.
 Geloni, Gianluca, Vitali Kocharyan, and Evgeni Saldin. "A novel self-seeding scheme for hard X-ray FELs." *Journal of Modern Optics* 58.16 (2011): 1391-1403

3) Amann, J., et al. "Demonstration of self-seeding in a hard-X-ray free-electron laser." *Nature photonics* 6.10 (2012): 693.

4) Ratner, Daniel, et al. "Experimental demonstration of a soft x-ray self-seeded free-electron laser." *Physical review letters* 114.5 (2015): 054801.

5) Inoue, Ichiro, et al. "Generation of narrow-band X-ray free-electron laser via reflection self-seeding." *Nature Photonics* 13.5 (2019): 319.

Hemsing, Erik. "Minimum Spectral Bandwidth in Echo Seeded Free Electron Lasers." *Frontiers in Physics* 7 (2019).

Future R&D

Attosecond Pump/Probe

Z. Zhang et al. Phys. Rev. Accel. Beams 22, 050701

The Dream Attosecond Experiment

Probe coupled electron/nuclear dynamics Currently beyond theoretical and numerical models!

 IOP Publishing | Royal Swedish Academy of Sciences
 Physics Science

 Phys. Sci. T160 (2016) 014002 (15pp)
 dk110.1008/0031-8040/T369/1/014002

 Multidimensional resonant nonlinear

 spectroscopy with coherent broadband

 x-ray pulses

TW-Scale Attosecond Pulses

Tanaka, Takashi. "Proposal for a pulse-compression scheme in X-ray free-electron lasers to generate a multiterawatt, attosecond X-ray pulse." *Physical review letters* 110.8 (2013): 084801.

Bonifacio, R., et al. "Physics of the high-gain FEL and superradiance." La Rivista del Nuovo Cimento (1978-1999) 13.9 (1990): 1-69.

TW-Scale Attosecond Pulses: Simplified Approaches

SLAC

"In comparison with a similar scheme proposed in a previous paper ... simplifies the accelerator layout." (T. Tanaka et al. J Synchrotron Radiat. 2016 Nov 1; 23(Pt 6): 1273–1281.)

1) Prat, Eduard, and Sven Reiche. Physical review letters 114.24 (2015): 244801.

2) Prat, Eduard, Florian Löhl, and Sven Reiche. Physical Review Special Topics-Accelerators and Beams 18.10 (2015): 100701.

3) Kumar, Sandeep, et al. Scientific reports 6 (2016): 37700.

4) Huang, Senlin, et al. *Physical Review Accelerators and Beams* 19.8 (2016): 080702.

5) Wang, Zhen, Chao Feng, and Zhentang Zhao. Physical Review Accelerators and Beams 20.4 (2017): 040701.

The Brightness Frontier: Cavity-Based FELs

Opportunities for. Advanced Accelerators

How Much FEL Power Actually Used

High-energy FEL facilities can generate Few mJ of pulse energy.

Tall order for compact machines! Convert energy from laser to electrons to x-rays, small chance you find a mJ at the other end...

However:

XFELs ~10¹⁰ x brighter than synchrotrons... Surely 10⁸ is still revolutionary!

~50% HXR beamtimes use beam-sharing mode -> ~1% of pulse energy ~35% of SXR beamtime uses 90% attenuation or more

(underestimate of actual use of attenuators since HXR attenuators are not archived...)

Opportunities in Attosecond Science

Saldin, Evgeny L., Evgeny A. Schneidmiller, and Mikhail V. Yurkov. "Design formulas for short-wavelength FELs." *Optics communications* 235.4-6 (2004): 415-420.

 $L_g \propto \epsilon_n^{5/6} \rightarrow \Delta t_{min} \propto \epsilon_n^{5/6}$

After optimizing all parameters cooperation length almost proportional to 1/emittance. Attosecond pulses from plasma photo-injectors!

B. Hidding, G. Pretzler, J. B. Rosenzweig, T. Königstein, D. Schiller, and D. L. Bruhwiler Phys. Rev. Lett. **108**, 035001

Beam from FACET-II plasma photo-injector sim. Assuming transport and ESASE compression are feasible ~5-10 times shorter pulses than LCLS: 42 as - 2 TW at 1 nm

Courtesy C. Emma

Does it Have to be an FEL?

Insensitive to pointing instability
Insensitive to correlated e-spread
Scalable to XUV

SLAC

E. A. Schneidmiller and M. V. Yurkov

Phys. Rev. ST Accel. Beams 13, 110701 (2010) - Published 13 November 2010

Longitudinal Space Charge Amplifier driven by a Laser-Plasma Accelerator Martin Dohlusa, Evgeny Schneidmillera, Mikhail V. Yurkova, Christoph Henninga and Florian J. Grunerb

Marinelli, A., et al. Physical review letters 110.26 (2013): 264802

Chirp-Tapered FEL

Radiation slips forward Photons move to electrons with different energy.

Change undulator K to keep resonance

$$\frac{1}{\gamma} \frac{\Delta \gamma}{C \Delta t} \lambda_r = \frac{\Delta K}{\Delta Z} \frac{K}{1 + K^2} \lambda_w$$

Chirp-taper compensation allows preserving gain while increasing bandwidth

Saldin, Evgenij L., Evgeny A. Schneidmiller, and Mikhail V. Yurkov. *Physical Review Special Topics-Accelerators and Beams* 9.5 (2006): 050702.

Giannessi, L., et al. Physical review letters 106.14 (2011): 144801.

Couprie, Marie-Emmanuelle, et al. "Towards a free electron laser based on laser plasma accelerators." Journal of Physics B: Atomic, Molecular and Optical Physics 47.23¹ 2014): 234001.

- Advanced X-ray FEL modes subject of intense investigation at XFEL facilities worldwide

 Accelerator physicist driving new science by accessing more extreme Parameters

- Things to look forward to:

Attosecond pump/probe Cavity based FELs (RAFEL, XFELO) TW attosecond pulses with superradiant operation

- Advanced accelerators present unique opportunities (and lots of challenges...)

SLAO

QUESTIONS?

Terawatt X-ray FELs

SLAC

STRUCTURAL DYNAMICS 2, 041701 (2015)

CrossMan chick for upda

The linac coherent light source single particle imaging road map

A. Aquila, ^{1,2} A. Barty, ³ C. Bostedt, ^{1,a)} S. Boutet, ¹ G. Carini, ¹ D. dePonte, ¹ P. Drell, ^{1,4,5} S. Doniach, ^{1,5} K. H. Downing, ⁶ T. Earnest, ^{7,8} H. Elmlund, ^{9,10} V. Elser, ^{1,11} M. Gühr, ¹² J. Hajdu, ^{13,2} J. Hastings, ¹ S. P. Hau-Riege, ¹⁴ Z. Huang, ¹ E. E. Lattman, ^{15,16} F. R. N. C. Maia, ^{13,6} S. Marchesini, ⁶ A. Ourmazd, ¹⁷ C. Pellegrini, ^{1,18} R. Santra, ^{3,19} I. Schlichting, ²⁰ C. Schroer, ²¹ J. C. H. Spence, ²² I. A. Vartanyants, ^{21,23} S. Wakatsuki, ^{1,24} W. I. Weis, ²⁴ and G. J. Williams^{1,25}

Pulse requirements: 1 TW - 10 fs

e.g. diffraction signal from crystal ~Intensity x (#cells)² Single molecule image requires large Intensity!

Duris, Joseph, Alex Murokh, and Pietro Musumeci. "Tapering enhanced stimulated superradiant amplification." *New Journal of Physics* 17.6 (2015): 063036.

Emma, Claudio, et al. "High efficiency, multiterawatt x-ray free electron lasers." *Physical Review Accelerators and Beams* 19.2 (2016): 020705.

Femtosecond X-ray Pump/X-ray Probe

SLAC

Α

В 6.15

> X-ray induced cluster dynamics. K. Ferguson et al. Science Advances 29 Jan 2016: Vol. 2, no. 1, e1500837

Increasing scattering vector q

Courtesy of S. Boutet And I. Schlichting