

High-intensity quantum electrodynamics in the field of an ultra-intense laser

Gianluca Sarri

g.sarri@qub.ac.uk

EAAC 2019, Italy

Gianluca Sarri

CUEEN'S UNIVERSITY High-power lasers in the world **EPSRC**

Gianluca Sarri

Probing Strong-Field QED with lasers

Slide 2/25

Part 1 Introduction

Gianluca Sarri

Probing Strong-Field QED With Lasers

High-field QED outside lasers **EPSRC**

Particle colliders

strong coupling $\alpha \chi^{2/3} > 1$

V. Yakimenko et al. PRL 2019

Astrophysics

surface magnetic field of magnetars $\sim 10^{-4} - 10 \text{ B}_{cr}$

B. Cerutti Space Sci. Rev. 2017

Fundamental physics

perturbative QED: $\alpha \ll 1$

non-perturbative phenomena:

V. I. Ritus J. Russ. Laser Res. 1985

Plasma physics

Gianluca Sarri

Probing Strong-Field QED with lasers

OUEEN'S UNIVERSITY What happens at the critical field? **EPSRC**

⇒ **Radiation Reaction** is one of the oldest and most fundamental problems in electromagnetism: How do we correctly model the electron dynamics if we include radiative losses?

0. Classical Lorentz force

 $m\frac{du^u}{ds} = eF^{uv}u_v$

X No energy loss

Damping force (radiation reaction term)
 Classical renormalisation (point-like electron)
 Runaway solutions! (diverging acceleration even without external field)

2. LL Equation $m\frac{du^{u}}{ds} = eF^{uv}u_{v} + \frac{2}{3}e^{2}\left(\frac{e}{m}(\partial_{\alpha}F^{uv})u^{\alpha}u_{v} - \frac{e^{2}}{m^{2}}F^{uv}F_{\alpha v}u^{\alpha} + \frac{e^{2}}{m^{2}}(F^{\alpha v}u_{v})(F_{\alpha \lambda}u^{\lambda})u^{u}\right)$ $\checkmark \text{ No runaway solutions}$ $\checkmark \text{ Valid in special relativity}$ $\lambda \gg \alpha\lambda_{C} \text{ (localised wavefunction)}$ $F << F_{cr}/\alpha \text{ (classical critical field)}$

Gianluca Sarri

Probing Strong-Field QED with lasers

Slide 4/25

EPSRC What happens at the critical field?

⇒ The classical treatment of radiation reaction neglects three main additional phenomena:

1. The energy of a single emitted photon can not exceed that of the electron

3. Production of electron-positron pairs (important only for $\chi \ge 1$)

Gianluca Sarri

Probing Strong-Field QED with lasers

What happens at the critical field? **EPSRC**

 \Rightarrow Creation of electron-positron pairs becomes significant

Gianluca Sarri

Probing Strong-Field QED with lasers

Slide 6/25

Part 2 Recent experiments on quantum radiation reaction

Gianluca Sarri

Probing Strong-Field QED With Lasers

Current status

Probing Strong-Field QED with lasers

Slide 7/25

Experiments at the CLF

Probing Strong-Field QED with lasers

What do we see?

Gianluca Sarri

What do we see?

Gianluca Sarri

Probing Strong-Field QED with lasers

Slide 9/25

Probing Strong-Field QED with lasers

Slide 10/25

Collision diagnostic

Gianluca Sarri

Probing Strong-Field QED with lasers

Slide 11/25

Collision diagnostic

Gianluca Sarri

Probing Strong-Field QED with lasers

Slide 12/25

Probing Strong-Field QED with lasers

Slide 12/25

Probing Strong-Field QED with lasers

Probing Strong-Field QED with lasers

Why are the semiclassical and QED model not reproducing the data exactly?

Why are the semiclassical and QED model not reproducing the data exactly?

OR, we could be in a situation where the constant cross-field approximation is not strictly valid

Probing Strong-Field QED with lasers

Slide 14/25

Part 3 Recent experiments on pair production

Gianluca Sarri

Probing Strong-Field QED With Lasers

QUEEN'S Above-threshold pair production **NIVERSITY** SELEAST

For an electron-positron pair to be produced during the collision of two photons of energy E_1 and E₂, we need a centre of momentum energy of $\sqrt{E_1E_2} > mc^2$: Breit-Wheeler pair production

If we start with $E_1 = 1.5 \text{ eV}$ (laser photon) but, with $E_1 = 1.5 \text{ keV} (X\text{-ray photon})$

this means $E_2 = 174$ GeV (forget about it...) this means $E_2 = 174$ MeV!

Gianluca Sarri

Probing Strong-Field QED with lasers

A major issue in these experiments is that you require incredibly high signal-to-noise. You want to measure a single particle (indeed, a fraction of a particle per shot) in an area flooded with secondary particles!

2018 campaign at CLF, results being analysed

Gianluca Sarri

Probing Strong-Field QED with lasers

Slide 16/25

QUEEN'S UNIVERSITY Above-threshold pair production

Gianluca Sarri

Probing Strong-Field QED with lasers

Slide 17/25

 $\sqrt{NE_1E_2} > mc^2$ Non-linear Breit-Wheeler pair production

However, what if I can get \mathcal{N} photons involved in one event? Then my threshold becomes

If we start with $E_1 = 1.5 \text{ eV}$ (laser photon) and $E_2 = 1 \text{ GeV}$ (bremsstrahlung), then N ~ 170.

Bx

Gianluca Sarri

Probing Strong-Field QED with lasers

Slide 18/25

Part 4 Next experiments E-320 at FACET-II

Gianluca Sarri

Probing Strong-Field QED With Lasers

FACET-II provides 13 GeV electron beams, which are already coupled with a low-power laser beam (20 TW)

Gianluca Sarri

Probing Strong-Field QED with lasers

The E-320 experiment

At FACET-II we aim (first shots in 2020) at measuring:

1. pair production in the laser field

2. quantum corrections to radiation reaction

3. non-linear Compton scattering (photon emission above the Compton edge)

4. breakdown of the LCFA

Quantum Radiation Reaction

Non-linear Compton scattering

Gianluca Sarri

Probing Strong-Field QED with lasers

Slide 20/25

Part 5 Next experiments LUXE at the EuXFEL

Gianluca Sarri

Probing Strong-Field QED With Lasers

The LUXE experiment

The EuXFEL generates high-quality electron beams with the following characteristics: E = 17.5 GeV $\Delta E/E = 2x10^{-4}$ $N = 10^9$

f = 10 Hz

What if we couple a high-intensity laser to it?

	30 TW, 8μm	300 TW, 8μm	300 TW, 3μm
Laser energy after compression (J)	0.9	9	9
Percentage of laser in focus (%)	40	40	40
Laser energy in focus (J)	0.36	3.6	3.6
Laser pulse duration (fs)	30	30	30
Laser focal spot FWHM (µm)	8	8	3
Peak intensity in focus (Wcm ⁻²)	1.6×10^{19}	$1.6 imes 10^{20}$	1.1×10^{21}
Dimensionless peak intensity, ξ	2	6.2	16
Laser repetition rate (Hz)	1	1	1
Electron-laser crossing angle (rad))	0.35	0.35	0.35

17.5 GeV electrons

Electron Lorentz factor	3.4×10^{4}	3.4×10^{4}	3.4×10^{4}
Quantum parameter χ	0.41	1.26	3.26

LUXE collaboration ArXiv:1909.00860 (2019)

Gianluca Sarri

Probing Strong-Field QED with lasers

Probing Strong-Field QED with lasers

Slide 22/25

The LUXE experiment

What is unique about the LUXE experiment?

The only experiments in the area are the E-144 at SLAC and the Gemini experiments

E -	- 144 and Gemini	LUXE
X X	$\chi \sim 0.2$ the E-144 still operated in a quasi-linear regime ($a_0 \sim 0.3$) perturbative non-linearities in Compton scattering	 χ ~ 1 even for a 30 TW laser high a₀ implies <i>strong non-linearities</i> in Compton scattering and pair production
Х	lack of parametric studies in intensity	✓ systematic and precision <i>parametric studie</i>
Χ	no direct photon-photon studies	✓ pure non-linear Breit-Wheeler above and below threshold
Х	difficult to secure sustained access	\checkmark easily upgradable \rightarrow sustained campaigns
		exotic physics at the <i>intensity frontier</i> !

Equipment cost for phase 1 ~ 30 M€ input from European and national funding agencies

LUXE collaboration ArXiv:1909.00860 (2019)

Slide 23/25

Gianluca Sarri

Probing Strong-Field QED with lasers

Part 6 Next experiments E6 area at ELI-NP

Gianluca Sarri

Probing Strong-Field QED With Lasers

The E6 area at ELI-NP

LaserFocusWorld®

World's most powerful laser, developed by Thales and ELI-NP, achieves record power level of 10 PW

After delivering pulses of 7 PW for more than 4 h continuously, the Thales system reached 10 PW on 7 March 2019.

Assuming 60% of it in a 3µm FWHM focal spot, we get

```
I = 6 \times 10^{22} Wcm^{-2} (a_0 > 100)
```

If we couple it with a 5 GeV electron beam, $\chi \sim 7!$

First commissioning experiments end 2020

Gianluca Sarri

Probing Strong-Field QED with lasers

Slide 24/25

Conclusions

Gianluca Sarri

Probing Strong-Field QED With Lasers

First experiments in CLF showed hints of the quantum nature of radiation reaction ($\chi \sim 0.2$)

First attempts at studying pair production from photon-photon collisions (**Breit Wheeler**)

E-320 experiment at FACET-II (13 GeV electrons and 20 TW laser)

LUXE experiment at EuXFEL

(17.5 GeV electrons and 30 - 300 TW laser)

Gianluca Sarri

Probing Strong-Field QED with lasers

Slide 25/25

Thanks for your attention!

Gianluca Sarri

g.sarri@qub.ac.uk

Main publications

[1] D. J. Corvan et al., Rev. Sci. Instrum. 85, 065119 (2014)
 [2] G. Sarri et al., Phys. Rev. Lett. 113, 224801 (2014)
 [3] D. J. Corvan et al., Optics Express 24, 3127 (2016)
 [4] K. T. Behm et al., Rev. Sci. Instrum 89, 113303 (2018)
 [5] K. Poder et al., Phys. Rev. X 8, 031004 (2018)
 [6] J. Cole et al., Phys. Rev. X 8, 011020 (2018)
 [7] LUXE collaboration ArXiv:1909.00860 (2019)

Gianluca Sarri

Probing Strong-Field QED With Lasers