

External Injection experiment: first accelerated beam

Jianfei Hua

Tsinghua University

Sep. 18, 2019

Acknowledgements

Laboratory of Laser Plasma Physics and Advanced Accelerator Technology

Collaborators

Zheng Zhou, Yingchao Du, Lixin Yan, Jiaru Shi, Chuanxiang Tang

Hsu-Hsin Chu and Jypyng Wang

UCLA Weiming An, Chaojie Zhang, Fei Li, Zan Nie, Warren Mori, Chan Joshi

Zhen Wang, Xingtao Wang, Bo Liu, Zhentang Zhao **SLAC** Xinlu Xu, Mark Hogan

Dou Wang, Dazhang Li, Jie Gao

Yang Wan, Victor Malka

- External injection from a Linac into a LWFA with ~100% capture efficiency
- Plasma dechriper to achieve 0.1% energy spread
- Ultra-compact turnkey laser development
- High energy plasma based injector for CEPC
 Summary

Two milestones for external injection

S. Steinke, et al., "*Multistage coupling of independent laser-plasma accelerators*", Nature, 530: 190, 2016

Two milestones for external injection

E. Adli, et al., "*Acceleration of electrons in the plasma wakefield of a proton bunch*", Nature, 561: 363, 2018

Demonstration of external injection

- External injection from a Linac to a LWFA
- Subsequent acceleration
- ~100% capture efficiency

Key challenges

- ✓ Ultrashort beam generation ($<\lambda_p$) ~13fs
- ✓ Size matching (tightly focused E beam $\sim w_0$) $\sim 20 \mu m$
- ✓ Synchronization between beam and laser ($<\lambda_p$) ~100fs
- ✓ Phase space matching
- $\checkmark\,$ Vacuum isolation between Linac and LWFA
- ✓ Robust plasma source based on laser ionization

Experimental layout for external injection

Achievement of external injection acceleration from a Linac to a LWFA

unpublished

Wavelength: 140fs

Focus location:

decel. phase

Achievement of external injection acceleration from a Linac to a LWFA

Gain: 1.11MeV(~1.5MeV) average(max.)

decel. phase

Two crucial parameters for gain and efficiency

Effect of laser focus location

z_f = -3.5 mm 1.45MeV

z_f = -4.5 mm 1.11MeV

z_f = -5.5 mm 0.77MeV

$$E_z \propto a_0^2 k_p^2 \exp(-2r^2/w^2)$$

The plasma density dependent energy gain

unpublished

6×10¹⁷cm⁻³ 0.77 MeV

2×10¹⁷cm⁻³ 0.26 MeV

$$E_z \propto a_0^2 k_p^2 \exp(-2r^2/w^2)$$

≻ Energy gain ∝ n_p
 ≻ Lower density: Wavelength Energy spread

How to improve capture efficiency?

- Size matching between wakefield and electron beam
 - Tight beam focusing
 - ✓ Large laser spot size

z_f: Location of laser focus

Non-optimized capture efficiency

 $z_f = -1.5 \text{ mm}, n_p = 6 \text{ X} 10^{17} \text{ cm}^{-3}$

Phase space dynamics

Transverse wakefield:

 $E_r - B_\theta \propto (4a_0^2k_pr/w^2)\exp(-2r^2/w^2)\sin(k_p\xi)$

Emittance precompensation by up-ramp

Up-ramp:
$$\partial(E_r - cB_\theta)/\partial\xi > 0$$

Plasma plateau: $\partial (E_r - cB_\theta) / \partial \xi < 0^{-1}$ Reverse the rotation direction of transverse phase space

Compensated by the long plasma upramp for the accumulated phase differences in the plasma plateau

Emittance evolutions with or without up-ramp

unpublished

3D PIC simulation for high efficiency acceleration

unpublished

Simulated laser-excited longitudinal wakefields

Feasibility of high-charge externalinjected beam into a LWFA

Q=20 fC >>>> Q=6 pC,13fs

beam excited wakefield ~ laser excited wakefield

unpublished

Feasibility of high-energy gain

Outline

External injection from a Linac into a LWFA with ~100% capture efficiency

Plasma dechriper to achieve 0.1% energy spread

- Experimental demonstration using uniform plasma dechriper
- A near ideal dechirper to achieve <0.1% energy spread using hollow channel plasma
- Ultra-compact turnkey laser development
- ➢High energy plasma based injector for CEPC

≻Summary

Energy chirp dominated energy spread

- Energy spread ~1% > the requirement of ~0.1% for the applications of FELs and colliders
- Relatively large acceleration phase span leads to large energy chirp (positive linear).

Y. P. Wu, et al., Proceedings of IPAC 2017,1258 (2017) Y. P. Wu, et al., PRL, 122:204804, 2019

PD effect for different beam current profiles

Energy spread reduction:

The complex interplay and trade-off among the linear chirp reduction, the nonlinear chirp increase and the slice energy spread growth.

Plasma dechirper experimental layout

Phase space dynamics for energy spread reduction

0.59MeV(1.28%)

Low plasma density

The comparisons use only one parameter to closely match three longitudinal phase spaces and integrated energy spectra.

0.06MeV(0.13%)

 $S_d \approx 1 (MV/m)/(mm pC)$

Solution for reducing emittance growth: a hollow channel plasma dechirper

- > Transversely uniform $E_z \rightarrow$ negligible slice energy spread increase
- Zero transverse focusing force negligible emittance growth
- Works well for both electron and positron beams

Plasma-based accelerator

Hollow channel plasma dechirper

PIC Simulation for hollow channel dechirper

Electron/ Positron	Energy	4GeV	Plasma	Density	5.0×10^{15} cm ⁻³
	Energy chirp	40MeV (rms)			
	Slice energy spread	0.4MeV		Length	~55cm
	Peak current	10kA		Inner radius	a=300um
	Pulse duration	30µm (100fs)			
	Transverse size	σ _r =4μm		Outer radius	b=500µm

PIC Simulation for uniform plasma dechirper

 \succ The longitudinal nonlinearity and the transverse nonuniformity of E_z

40MeV(1%) e-: 11.58MeV(0.29%) / e+: 12.49MeV(0.31%)

The transverse wakefield depends on the longitudinal position Emittance increase by a factor of 14 (e⁻)/ 83(e⁺)

Dechirping effects for different current profiles in hollow channel plasma

<0.01% (Flat-top)</p>

Initial energy spread 1%

0.14% (sin²)

- 0.22% (Gaussian)

A flat-top beam current profile has the best effect for linear energy chirp reduction

Robustness of a hollow channel plasma dechriper

2µm offset: Negligible beam offset growth; Emittance growth <25%

~200mrad tilt: Emittance growth <25%

- External injection from a Linac into a LWFA with ~100% capture efficiency
- Plasma dechriper to achieve 0.1% energy spread
- Ultra-compact turnkey laser development
- High energy plasma based injector for CEPC
 Summary

Ultra-compact turn-key lasers for application

Newlight Source

4 year+ joint effort of Tsinghua, NCU and Qifeng New Light Source Corp.

The Goal: Building turn-key lasers for real application a laser built by the user and for the user

Single box 1-50TW laser systems:

✓ very compact

Innovation on high contrast regen amplifier

1.4m*0.8m*0.25m for 1-5TW

1.4m*1.5m*0.25m for 20-50TW

✓ turn-key performance for long term operation
 Fully sealed subsystems
 Independently controlled temperature

More information please contact Prof. Wei Lu(weilu@tsinghua.edu.cn)

Single Box 20-50TW system

Turn-key performance

Super stable diode pumped frontend (even for air conditioning is off)

20-50TW Ti:Sapphire laser
(0.6~1.5J 10Hz)Energy stability (RMS)<1%</td>Contrast>10% (ns)Duration>2x10% (100ps)Duration<30fs</td>Power20-50TW

<1% energy stability for final amplifier</p>

- External injection from a Linac into a LWFA with ~100% capture efficiency
- Plasma dechriper to achieve 0.1% energy spread
- Ultra-compact turnkey laser development
- High energy plasma based injector for CEPC
 Summary

A possible middle step for AAC towards colliders Plasma based injector for 100km CEPC

- CEPC (Circular Electron Positron Collider) is a major high energy physics plan under strong promotion in China to build a 100km circular machine for a Higgs Factory.
- A high energy injector (40GeV level) is needed to inject e+/e- beams into the main ring.
- Plasma based schemes (PWFA) may provide a novel and cost effective solution for this injector.
- A joint research group of Tsinghua Univ. and IHEP has been formed since 2017 to study the feasibility of using plasma based acceleration as a novel solution for CEPC injector.

Circular Higgs Factory (Phase I) +SppC (Phase II) at same tunnel

A preliminary design of CEPC plasma based high energy injector

- Driver/trailer beam generation through Photo-injector
- HTR PWFA with good stability (single stage TR=3-4, Cascaded stages 6-12, high efficiency)
- Positron generation and acceleration in an electron beam driven PWFA using hollow plasma channel (TR=1)

Ref: CEPC CDR

Summary

- The external injection from a Linac to a LWFA with ~100% capture efficiency has been experimentally demonstrated.
- For uniform plasma dechirper, the experimental results, combined with high-fidelity 3D PIC simulations indicate a near tenfold reduction of the beam energy spread from 1.28% to 0.13%.
- Next generation ultra-compact turnkey laser systems for application is ready to go. Stay tuned!
- The feasibility of using plasma wakefield accelerator as a high energy injector for CEPC is under intense study, a joint effort of Tsinghua Univ and IHEP.

Thank you for your attention!