OVERVIEW OF **POSITRON ACCELERATION IN PLASMA-BASED ACCELERATORS**

"I think you should be more explicit here in step two."

Dr. Carl A. Lindstrøm

Research Fellow at **FLASHFORWARD**

OVERVIEW OF POSITRON ACCELERATION IN PLASMA-BASED ACCELERATORS

FLASHFORWARD Research Fellow | Research Group for Plasma Wakefield Accelerators Deutsches Elektronen-Synchrotron DESY, Particle Physics Division, Hamburg, Germany

Accelerator Research and Development, Matter and Technologies Helmholtz Association of German Research Centres, Berlin, Germany

Dr. Carl A. Lindstrøm

PART 1: THE POSITRON PROBLEM

COLLIDERS FOR HIGH ENERGY PHYSICS

> Particle colliders are the work horses of high energy physics.

- > Discovery machines *proton*-*proton colliders*
- > Precision machines *electron*-positron colliders (next up)
 - > Model independent measurements of couplings etc.

> Proposed machines are extremely large

> ILC: 31 km (0.5 TeV)

- > CLIC: 13–50 km (0.5–3 TeV)
- > Energy limited by <u>cost</u> and <u>accelerating gradient</u>.
 - > ~\$10 billion is at the cost limit of science
 - > Gradient of RF cavities limited to ~100 MV/m

Image credit: CERN

COLLIDERS FOR HIGH ENERGY PHYSICS

> Particle colliders are the work horses of high energy physics.

- > Discovery machines proton-proton colliders
- > Precision machines *electron*-positron colliders (next up)

> Model independent measurements of couplings etc.

> Proposed machines are extremely

> ILC: 31 km (0.5 TeV)

> CLIC: 13–50 km (0.5–3 Te'

Plenary talk (Thursday 09:00) The road to very high energies Steinar Stapnes (CERN)

> Energy limited by <u>cost</u> and <u>accelerating gradient</u>.

> ~\$10 billion is at the cost limit of science

> Gradient of RF cavities limited to ~100 MV/m

> Fundamental physics requirements:

> High energy (TeV-scale) — for the physics

> High luminosity (10^{34} cm⁻² s⁻¹ = 600 million events s⁻¹) — for the statistics

> Practical funding requirements:

> High power efficiency (~10%) — for the running costs

> High gradient (GV/m-scale) — for the construction costs

NONLINEAR PLASMA WAKEFIELDS — IDEAL FOR ELECTRON ACCELERATION

> In theory a good match for colliders:

- > High gradients: multi-GV/m
- > Beam loading: high charge, high efficiency, low energy spread
- > Linear focusing fields: emittance preservation

> **Beam-driven**: high wall-to-driver efficiency (~10%).

- > PWFA experiments are catching up to theory:
 - > FFTB High gradient (52 GV/m), high gain (42 GeV)
 - >FACET Two bunches, high efficiency (~30% driver-witness)

 FLASHForward, FACET-II – Emittance preservation, (in progress)
Total efficiency, Low energy spread

Image credit: M. Litos et al., Nature 515, 92 (2014)

PLASMAS ARE ASYMMETRIC – POSITRONS NOT INVITED

> Blowout regime — *defocusing for positrons*.

> The success for electrons does not translate to positrons — need a new concept.

> The Positron Problem — Can positrons be <u>efficiently</u> accelerated at <u>high gradient</u> while <u>preserving emittance</u>?

Image credit: S. Corde et al., Nature 524, 442 (2015)

BUT PROMISES WERE MADE...

> Plasma colliders road maps assume positrons acceleration will be developed soon.

Laser-driven plasma collider road map (LBNL)

Increasing tension between promises and progress...

E. R. Colby and L. K. Len, Rev. Accel. Sci. Technol. 9, 1 (2016).

Beam-driven plasma collider road map (SLAC)

PART 2: PROPOSED SOLUTIONS

CHOOSE YOUR POSITRON ADVENTURE!

LINEAR WAKEFIELDS

Image credit: S. Corde (QuickPIC)

> Symmetrizes the electron–positron plasma response

> Acceleration and focusing of positrons is possible!

LINEAR WAKEFIELDS — FFTB EXPERIMENTS (ACCELERATION)

> Positron experiments performed at FFTB (SLAC):

> High-energy (28.5 GeV), high-charge (3 nC), long bunches (700 μ m rms).

> Long plasma (1.4 m), medium density (1.8×10¹⁴ cm⁻³ => λ_p = 2.5 mm).

> Observed linear plasma wakefields ($E_z/E_{wb} \sim 0.05$) — first positrons accelerated in a plasma!

Image credit: B. Blue et al., Phys. Rev. Lett. 90, 214801 (2003)

B. Blue et al., Phys. Rev. Lett. 90, 214801 (2003)

LINEAR WAKEFIELDS — AVOIDING COLLAPSE REQUIRES LARGE EMITTANCE

> Example (simulation by W. An, 2018)

> Plasma density 10¹⁶ cm⁻³

Bunch	Charge	Bunch length	Peak current
Driver	2 nC	16 µm (rms)	15 kA
Trailing	1 nC	20 µm (rms)	6 kA

- > Gradient: ~200 MV/m
- Normalized emittance: 4000 mm mrad
- > Can be avoided by using very small (low charge) bunches.

Image credit: QuickPIC simulations by W. An (2018)

> Linear regime not suitable for positron acceleration with high-efficiency, low emittance and high gradient

LINEAR (?) WAKEFIELDS — FFTB EXPERIMENTS (TRANSPORT)

> Similar beam parameters as for acceleration experiments.

> Low density experiments ($< 7 \times 10^{12}$ cm⁻³)

> Slice dependent / nonlinear focusing observed

> Tail focused with $7 \times n_e$ (background electron density)

> Evidence of an axial density spike.

- > Non-Gaussian beam halo forms, containing ~40% of the charge.
- > Results in large emittance growth.

No plasma (Gaussian)

x/g_x

M. Hogan et al., Phys. Rev. Lett. 90, 205002 (2003) P. Muggli et al., Phys. Rev. Lett. 101, 055001 (2008)

Image credit: M. Hogan et al., Phys. Rev. Lett. 90, 205002 (2003)

Plasma (non-Gaussian halo)

STRONGLY NONLINEAR WAKEFIELDS (POSITRON-DRIVEN)

- > Tactic: Embrace the nonlinearity!
- > Intense positron bunches => blowout-like structure forms after plasma electrons cross the axis.
- > Large accelerating gradients, but the accelerating phase is defocusing.
- > Strong beam loading: The accelerating beam self-focuses by "trapping" electrons on axis "self-loaded regime"

Image credit: S. Corde et al., Nature 524, 442 (2015)

SELF-LOADED REGIME - FACET EXPERIMENTS

> High-energy (20 GeV), high charge (2.2 nC), compressed bunches (30–50 µm rms)

> Long (1.15 m), **high-density** (8×10^{16} cm⁻³) plasma channel.

> Single bunch experiment:

> Large energy gain observed: ~5 GeV (3.8 GV/m)

> Low energy spread (~2% spectral peak)

> High energy efficiency (~30%)

> Also successfully performed a two-bunch experiment

Image credit: A. Doche et al., Sci. Rep. 7, 14180 (2017)

S. Corde *et al.*, Nature 524, 442 (2015) A. Doche et al., Sci. Rep. 7, 14180 (2017)

Image credit: S. Corde et al., Nature 524, 442 (2015)

Self-loaded regime — Emittance growth and equilibrium shapes

> Eventually reaches a non-Gaussian equilibrium shape — large emittance growth expected.

> In FACET experiments, equilibrium was reached after ~30 cm of plasma.

Important question: Is it possible to match directly to the equilibrium shape with a low-emittance beam?

NONLINEAR WAKEFIELDS — ELECTRON-DRIVEN, FINITE CHANNEL RADIUS

> What happens to a blowout if we restrict the plasma column radius?

- > Blown-out electrons from different radii have different trajectories do not form a single sheath!
- > The plasma electron axis-crossing is stretched out an "inverse blowout" forms behind the blowout!
- > Positrons can be accelerated and focused simultaneously!

> Recent theoretical development (2019) – no experiments yet.

S. Diederichs et al., PRAB 22, 081301 (2019)

STRONGLY NONLINEAR WAKEFIELDS (ELECTRON-DRIVEN) — FINITE CHANNELS

- > Positrons are attracted by on-axis electron density spike
- > Difference to other schemes: on-axis electrons are ~relativistic
- > Current research questions:
 - > Emittance preservation for high beam loading (high efficiency)?
 - > Stability to misalignments?

S. Diederichs et al., PRAB 22, 081301 (2019)

Carl A. Lindstrøm | Twitter: @FForwardDESY | Web: forward.desy.de | EAAC 2019 | Elba, Italy | Sep 18, 2019 | Page 19

STRONGLY NONLINEAR WAKEFIELDS (ELECTRON-DRIVEN) — FINITE CHANNELS

- > Positrons are attracted by on-axis electron density spike
- > Difference to other schemes: on-axis electrons are ~relativistic
- > Current research questions:
 - > Emittance preservation for high beam loading (high efficiency)?
 - > Stability to misalignments?

S. Diederichs et al., PRAB 22, 081301 (2019)

Carl A. Lindstrøm | Twitter: @FForwardDESY | Web: forward.desy.de | EAAC 2019 | Elba, Italy | Sep 18, 2019 | Page 19

STRONGLY NONLINEAR WAKEFIELDS (ELECTRON-DRIVEN) — WAKE INVERSION

> Tactic: Engineer the driver such that an inverse wake forms.

- > Use a ring-shaped beam to wrap a blowout around the axis!
- > Electrons are "blown in" towards the axis.
- > The wakefield is accelerating and linearly focusing!
- > Example (simulation by Vieira et al.)
 - > Low emittance (5 µm), low charge witness bunch (~26 pC)
 - > Accelerating gradient: ~8.5 GV/m
 - > Driver-to-witness efficiency ~1%

> However, beam loading with a positron bunch changes the wakefield — non-linear focusing occurs.

J. Vieira & J. T. Mendonça, Phys. Rev. Lett. 112, 215001 (2014) J. Vieira et al., AIP Conf. Proc. 1777, 070012 (2016)

CORE PROBLEM: LONGITUDINAL VS. TRANSVERSE BEAM LOADING

> Longitudinal beam loading — Required for efficiency

> The beam alters the longitudinal wakefield by extracting energy from high-momentum plasma electrons

> Transverse beam loading — Leads to nonlinear focusing (and emittance growth)

> The beam alters the (on-axis) transverse wakefield by attracting/repelling charge.

> The *Blowout Miracle*: Longitudinal beam loading without transverse beam loading

> Electrons responsible for *acceleration only* (ions responsible for focusing).

CORE PROBLEM: LONGITUDINAL VS. TRANSVERSE BEAM LOADING

> Longitudinal beam loading — Required for efficiency

> The beam alters the longitudinal wakefield by extracting energy from high-momentum plasma electrons > Transverse beam loading — Leads to nonlinear focusing (and emittance growth)

> The beam alters the (on-axis) transverse wakefield by attracting/repelling charge.

> The Positron Problem: Can positrons be longitudinally beam loaded without transverse beam loading?

> Electrons responsible for both acceleration and focusing.

Hollow plasma channels

Image credit: SLAC National Accelerator Laboratory

HOLLOW CHANNELS

No plasma on axis — no focusing on axis

Image credit: C. A. Lindstrøm et al., Phys. Rev. Lett. 120, 124802 (2018)

> A (electron / positron / proton / laser) beam drives a similar longitudinal wakefield.

> On-axis beam => **no focusing fields inside** — *emittance is preserved*

T. Tajima, Proc. of HEACC1983, p. 470 (1983) S. Lee et al., Phys. Rev. E 64, 045501 (2001)

HOLLOW CHANNELS — FACET EXPERIMENTS: LONGITUDINAL WAKEFIELDS

> FACET E225 experiment at SLAC

- > 10 TW laser + kinoform optic = 12 cm long, 500 μ m diameter channel
- > 20 GeV positron beams, 850 pC, 35 μ m (rms) long, single bunch

> 230 MV/m decelerating fields measured! Acceleration observed in later experiments.

S. Gessner et al., Nat. Comms 7, 11785 (2016)

HOLLOW CHANNELS – TRANSVERSE WAKEFIELDS

> Misaligned bunches induce a (dipole) transverse wakefield — *deflecting away from the axis!*

> Panofsky–Wenzel theorem links longitudinal and transverse wakefields — the short-range wake theorem

> Transverse wakefield scales more strongly with decreasing aperture.

> CLIC cavity (a = 3 mm) — W_x/ $\Delta x = 100 \text{ V/pC/m/mm}$

> E225 hollow channel ($a = 215 \mu m$) — W_x/ $\Delta x = 1,000,000 V/pC/m/mm$

C. B. Schroeder et al., Phys. Rev. Lett. 82, 1177 (1999)

$$\frac{W_x(z)}{\Delta x} = -\frac{\kappa(a,b)}{a^2} \int_0^z W_z(z')dz'$$

HOLLOW CHANNELS — FACET EXPERIMENTS: TRANSVERSE WAKEFIELDS

C. A. Lindstrøm et al., Phys. Rev. Lett. 120, 124802 (2018)

HOLLOW CHANNELS — MITIGATING TRANSVERSE WAKEFIELDS

- > Ideally: perfect alignment, no instability seed.
- > Focusing is required to avoid instability!
- > External focusing? (i.e., quadrupoles)
 - > Studied for dielectric channels (same physics)
 - > Practically limited to ~150 MV/m only.
- > Need on-axis electrons without transverse beam loading.

Idea: Use relativistic (GeV), counter-propagating electrons	cathode
> Makes on-axis electrons immobile like ions (large relativistic mass)	
"Electron lensing" demonstrated for low energy	

(10 keV) at the Tevatron, Fermilab in 1999.

Image credit: C. Li et al., Phys. Rev. ST Accel. Beams 17, 091302 (2014)

Image credit: Shiltsev et al., Phys. Rev. ST Accel. Beams 2, 071001 (1999)

PART 3: COMPARING CONCEPTS

Carl A. Lindstrøm | Twitter: @FForwardDESY | Web: forward.desy.de | EAAC 2019 | Elba, Italy | Sep 18, 2019 | Page 29

TAKING INSPIRATION FROM FUSION RESEARCH

- > John Lawson proposed a figure of merit for fusion research.
- > The *triple product:*

Density x **Confinement time** x **Temperature**

- > Allows comparison between different technologies and machines.
- > Has guided the research towards large tokamaks (e.g., JET and ITER)
- > Need a similar guide for plasma collider concepts!

LUMINOSITY PER POWER — OUR "TRIPLE PRODUCT"

> Main figure of merit — Luminosity per wall-plug-power

> Many assumptions:

- > Factors out rep. rate
- > Concept can be scaled to high energy (TeV) staging
- > Sub-% energy spread required
- > Beam stability (~10 nm misalignment tolerance)
- Provides a way of comparing concepts based on instantaneous physics (fast) instead of full-scale collider design (slow).

> (Applies equally to electron and positron arm)

(beamstrahlung limited)

COMPARISON VIA LUMINOSITY PER POWER (LOW ENERGY REGIME) — EXAMPLE

> Showing only published parameter sets (experiment, simulation)

> Too early to conclude which concept is better — concepts need to be optimized for luminosity/power.

POSITRON EXPERIMENTS AT FACET-II

> Only one way to find out — **positron experiments!**

> Positrons acceleration is foreseen for later phases of FACET-II operation (2022+).

Important for the community to express support for positron experiments at FACET-II.

> Keeping the momentum: Theoretical advances often made in the vicinity of experimental research.

POSITRON EXPERIMENTS AT FACET-II

> Only one way to find out — **positron experiments!**

Important for the community to express support for positron experiments at FACET-II.

> Keeping the momentum: Theoretical advances often made in the vicinity of experimental research.

TAKE-AWAY MESSAGES

- > TeV-scale electron-positron colliders *important for future high-energy physics*.
- > Plasma wakefields are promising for electrons does not translate to positrons
- > Several proposed methods:

>Quasi-linear wakefields	— must beam load
> Nonlinear wakefields (self-loaded)	— Is there a low-er
> Nonlinear wakefields (finite channel)	— Is it stable? Car
> Wake inversion	— Can nonlinear f
> Hollow channels	– Can we suppre

> Core issue: Longitudinal beam loading without transverse beam loading for positrons?

> Can plasma electrons simultaneously focus uniformly and accelerate efficiently?

> Urgently need optimization and comparison — *figure of merit = luminosity/power*

> Positron experiments planned for FACET-II — very important for the advancement of the field

ding imply large emittance?

mittance equilibrium distribution?

n it be efficient?

fields be avoided when loading?

Can we suppress instability by strong focusing?

WORDS TO LEAVE ELBA WITH...

"Napoleon Bonaparte on Elba" by Horace Vernet

Impossible n'est pas français.

...alternatively...

Impossible is a word to be found only in the dictionary of fools.

– Napoleon Bonaparte