

Overview of high gradient X-band RF technology development

Gerardo D'Auria

Elettra – Sincrotrone Trieste

4th European Advanced Accelerator Concepts Workshop 15-21 September 2019, Hotel Hermitage, Isola d'Elba, Italia

> Overview and historical remarks

- > The X-band technology
- > X-band applications:
 - Linear collider
 - Photon sources
 - Beam diagnostics and manipulation

> Conclusions

Considering the vastness of the subject, only a selection of activities at laboratories that provided me with information and data about their projects/activities will be presented. I apologize in advance for those who will not be mentioned.

Already in the mid 60's, the Slac "Blue book" reports a clear interest in the accelerator community for X-band technology.

➡

Table 6-2 Design parameters of 20-GeV accelerator at three frequencies*

	Frequency			
Parameter	(L-Band) 1000 MHz	(S-Band) 3000 MHz	(X-Band) 9000 MHz	
Shunt impedance r (megohms/	31	53	02	
RF.loss factor (Q)	2.25 × 104	1.3 × 10 ⁴	0.75 × 10 ⁴	
Filling time t_F (µsec)	4.31	0.83	0.16	
Total RF peak power (MW)	9216	5320	3072	

- The driving force behind the X-band technology development has been the scientific interest for the construction of a Multi TeV e⁺e⁻ linear collider. From the late 1980's to 2004, groups from SLAC, KEK and Fermilab began a dedicated development of X-band technology for a TeVscale Linear Collider. The frequency choice, 11.4 GHz, four times that of SLAC linac, was motivated by cost benefits:
 - \succ high gradients \succeq shorter and cheaper linacs;
 - > lower energy per pulse \succeq fewer RF sources.
- In 2004, the International Technology Review Panel (ITRP) selected Lband superconducting RF technology for the International Linear Collider (ILC) which led to a slowdown in X-band activities.
- In 2007 CERN decided to lower the Compact Linear Collider (CLIC) frequency to 12 GHz (previously at 30 GHz) producing a new interest in Xband and the CERN-SLAC-KEK collaboration on high gradient X-band development.

In addition to the Linear Collider application, X-band technology is now rapidly expanding for the multiple uses that it can satisfy. In particular:

- > Very compact X-ray FELs and photon sources, based on few tens of MeV up to multi GeV linacs.
- > Diagnostics for X-ray FELs, i.e.:
 - transverse deflecting cavities for bunch length measurements and beam phase space characterization with extremely high resolution.
- > Beam manipulation, i.e.:
 - energy linearizer, already in use at LCLS, FERMI, SwissFEL, and SXFFI
 - > crab cavities for beam luminosity improvement at collider IP (i.e. CLIC).
- > Medical and industrial applications, i.e.:

 - Iow energy compact linacs for radiographies and mohispresentation inspections.

Overall activities/projects

X-band high power test infrastructures

Laboratory	Name	Power	Status
CERN (CH)	XBox-1-2	50 MW	Operat.
	XBox-3	4 x 6 MW	Operat.
KEK (Japan)	NEXTEF	2 x 50 MW	Operat.
Tsinghua Un. (CINA)	TTX	50 MW	Commiss.
INFN-LNF (ITA)	EuSPARC-Lab	50 MW	Procurem.
SINAP (Cina)		50 MW	Procurem.
ALS (AU)		2 x 6 MW	Proposed
SLAC (USA)	ASTA	50 MW	Operat.

X-band linacs

Laboratory	Name	Power	Status
TU/e (NL)	ICS -50 MeV	6 MW	Des. & proc.
CERN (CH)	CLEAR–50 MeV	50 MW	Des. & prep.
INFN-LNF (ITA)	EuSPARC-1 GeV	50 MW	CDR
Internat. Collab.	CompactLight 5.5 GeV	Des	ign Study
CERN (CH)	LDMX–3.5 GeV	50 MW	Proposal
Gronin. Univ. (NL)	X-FEL-1.4 GeV	NL	roadmap
CERN (CH)	CLIC–380 GeV	50 MW	CDR
LLNL (USA)	ICS - 30 MeV	50 MW	Commiss.
SLAC (USA)	NLCTA – 350 MeV	50 MW	Operat.
STFC	XARA – 1.0 GeV	50 MW	Proposal

X-band linearizers and deflectors

Laboratory	Name	Power	Status
Elettra - ST	Fermi Lin.	50 MW	Operat.
PSI	SwissFEL Lin.	50 MW	Operat.
	SwissFEL TDC	50 MW	Des. & Proc.
DESY	FLASH FW TDC	6 MW	Des. & Proc.
	FLASH2 TDC	6 MW	Des. & Proc.
	Sinbad TDC	tbd	Planning
SINAP	SXFEL Lin.	6 MW	Operat.
	SXFEL TDC	2 x 50 MW	Proc.
STFC	CLARA Lin.	6 MW	Des. & Proc.
Tsinghua Univ.	TTX Lin.	6 MW	Planning
SLAC	LCLS Lin.	50 MW	Operat.
	LCLS TDC (3)	50 MW	Operat.
	NLCTA TDC (2)	50 MW	Operat.
	FACET TDC (1)	50 MW	Operat.

Workshop, 15-21 September 2019, Hotel Hermitage, Isola d'Elba, Italia

Advantages:

- > Higher operating gradients
 - X-band is capable up to 80-100 MV/m
 - S-band is limited to about 20-24 MV/m
 - C-band is limited to about 32-35 MV/m
- > Higher energy efficiency, especially for short pulse operation
 - Important for lightly loaded operation
 - Opens possibility of higher repetition rates , i.e. kHz X-ray FELs

Drawbacks:

- Larger wakefields*
 - Need larger iris radius to reduce the short-range wakes
 - Need HOM damping to reduce the long-range wakes
- > Very tight alignment tolerances

*Generally small for X-FELs operating with short bunches (≤ 100 fs) and low bunch charge < 250 pC

High Gradient RF design: methodology & constraints

i.e. BDR specification for CLIC: ½ 3x10⁻⁷/pulse/m (at 50 Hz, 1 BD every 3 days/structure)

CLIC Design

À = 11.994 GHZ E_{acc}. > 100MV/m Input power • 50 MW Pulse length • 200 nsec Repetition rate 50 Hz

Micron-precision disk

HOM damping waveguide

Courtesy W. Wuensch

Courtesy W. Wuensch

- Since the late 80's SLAC has pioneered the X-band technology development with a major contribution from KEK for the high gradients accelerating structures.
- The important R&D effort brought the development of many high power RF components at 11.424 GHz, i.e. klystron, HG structures, WG components.
- From 2007 SLAC has been actively involved with CERN and KEK on high gradient X-band development (i.e. CLIC), as well as to support many X-ray laboratory programs (FELs and compact photon sources).
- In 2010, SLAC made an extremely important contribution for CLIC and for FEL applications with the manufacture of the first 50 MW at 12 GHz klystron.
- Recently SLAC has moved to new ambitious developments based on Cryogenic RF Technologies.

SLAC perspectives and new developments

Cryogenic-Copper Accelerating Structures: New Frontier for Beam Brightness, Efficiency and Cost-Capability

- Increased conductivity and hardness enables higher gradients
- Dramatic reduction in cost of system including cryogenics at 77K
- 2.5X less power establishing gradient allows for heavy beam loading even at high gradient – <u>improving system efficiency</u>

Increase in Q_0 by a factor of 2.5

M. Nasr, S. Tantawi, E. Nanni, et el.,

Operating Test Structure at Design Gradient

Time (s) Impact of novel structures and temperatures → order of magnitude increased performance

> Courtesy E. Nanni

Elettra Sincrotrone Tr

X-ray FELs and photon sources

The CompactLight project

(*http://CompactLight.eu*) is an EU funded design study aimed at promoting the construction of the next generation FEL based photon sources with innovative accelerator technologies.

The objective is the design of a 5.5 GeV Xband linac to drive a FEL facility with soft and hard x-ray options that can be simultaneously operated.

Preliminary CompactLight FEL parameters

Parameter	Unit	Soft x-ray FEL	Hard x-ray FEL
Photon energy	keV	0.25 - 2.0	2.0 - 16.0
Wavelength	nm	5.0 - 0.6 0.6 - 0.	
Repetition rate	Hz	100 to 1000*	100
Pulse duration	fs	0.1 - 50	
Polarization		Variable - Selectable	
Two-pulse delay	fs	± 100	
Two-colours separation	%	20 10	
Synchronization	fs	< 10	
"with a progressive approach			

The CompactLight Collaboration (24 members)

Linac beam parameters at full energy

Parameter	Value
Max energy	5.5 GeV @100 Hz
Peak current	5 kA
Normalised emittance	0.2 mm.mrad
Bunch charge	< 100 pC
RMS slice energy spread	10-4
Max photon energy	16 keV
FEL tuning range at fixed energy	×2
Peak spectral brightness @16 keV	1033 ph/s/mm2/mrad2/0.1%bw

FEL layout

1000

RF system parameter and layouts done for 100 Hz baseline, 100/250 Hz dual mode and 100/1000 Hz dual klystron

Average gradient <g> [MV/m]</g>	65	32	30.4
Max klystron available out. power [MW]	50	50	10
Req. klystron power per module [MW]	39	42.5	8.5
RF pulse length [μs]	1.5	0.15	1.5
SLED	ON	OFF	ON
Av. diss. power per structure [kW]	1	0.31	2.2
Peak input power per structure [MW]	68	10.6	14.8
Av. Input power per structure [MW]	44	10.6	9.6
Module energy gain [MeV]	234	115	109

Parameter	Value
Frequency [GHz]	11.9942
Phase advance per cell [rad]	2π/3
Shunt impedance R [MΩ/m]	90-131
Effective shunt Imp. R_s [M Ω /m]	387
Group velocity v _g [%]	4.7-1.0
P _{out} /P _{in}	0.215
Filling time [ns]	144
Number of cells per structure	108
Unloaded SLED Q-factor Q_0	180000
External SLED Q-factor Q _E	23000
# structures per module N _m	4
Module active length L _{mod} [m]	3.6
Average iris radius <a>	3.5
Iris radius input-output [mm]	4.3-2.7
Structure length L _s [m]	0.9
	Courtesy

The EuPRAXIA@SPARC_LAB project (INFN-LNF),

is a new multi-disciplinary user-facility, equipped with a soft X-ray

FEL driven by a 1 GeV high brightness linac based on

	Units	1 GeV Plasma driven	1 GeV X-band only
Bunch charge	pC	30	200
Bunch length rms	fs	10	60
Peak current rms	kA	3	2
Rms energy spread	%	1.	0.1
Slice energy spread	%	0.1	0.05
Rms norm. emittance	μm	1.	1.
Slice nor. emittance	μm	< 1.	< 1.
Slice length	μm	0.75	1.
Radiation wavelength	nm	3	3
P	$\times 10^{-3}$	< 1	< 1
Undulator period	cm	1.5	1.5
K		0.987	0.987

plasma accelerator modules.

Courtesy M. Diomede

X-Band LINAC parameters				
total active length L _t		16 m		
Number of sections N _s	32	2 (4 modules x 8 sections)		
available RF power	50 MW (@klystron output coupler) 40 MW (@ section input couplers)			
	Injection in the plasma Injection in the undulator Ultima			
linac energy gain ΔW _{linac}	480 MeV	910 MeV	1280 MeV	
average acc gradient <e<sub>acc></e<sub>	30 MV/m	57 MV/m	80 MV/m	
total required RF power P _{RF}	44 MW	158 MW	310 MW	
			Courtesy	

M. Diomede

XARA: <u>X</u>-band <u>A</u>ccelerator for Research and <u>A</u>pplications

Inverse Compton Scattering (ICS) source for tunable, monochromatic and highly coherent hard X-ray beams in a compact setup.

	Phase 1	Phase 2 > Brill.	Phase 2 > X-ray En.
Electron energy (MeV)	20	20	50
Charge per electron pulse (pC)	25	50	50
Electron beam waist (µm)	10	5	5
Laser wavelength (nm)	400	512	512
Energy per laser pulse (mJ)	5	100	100
# Electron bunches / train	1	10	10
Repetition rate klystron (Hz)	400	400	400
X-ray en. (keV)/Wavelength (Å)	19.9/0.6	15.5/0.5	97.1/0.13
Emission angle 0.1% bw (mrad)	0.79	0.79	0.32
# photons/s	6.6E10 ⁷	1.4E10 ¹¹	1.4E10 ¹¹
# photons/s/0.1% bandwidth	2.5E10 ⁵	5.2E10 ⁸	5.2E10 ⁸
Brill. (ph/s/mrad²/mm²/0.1% bw)	4.0E10 ⁹	3.3E10 ¹³	2.1E10 ¹⁴

Õ **3m**

J. Luiten

LLNL ICS x-ray source

Lawrence Livermore National Laboratory Laser-Compton X-Ray Source

Interaction Laser:

- Energy: 750 mJ
- Wavelength: 532 nm
- Focal Spot: 50 µm
- Pulse Length: 6.5 ns

X-ray Beam:

- Flux: 3 x 10⁶ photons/s (4p)
- Flux: 3 x 10⁴ photons/s (4 mrad cone)
- Energy: 20-35 keV
- Bandwidth: 2% (4 mrad cone)
- Spot Size: <42 µm (detector limited)
- Pulse Length: 2 ps
- Peak Brightness*: >10¹⁵
 photons/s/eV/mrad2/mm2/0.1%bw

Courtesy R. Marsh

LLNL ICS x-ray source

LLNL ICS x-ray source

Lawrence Livermore National Laboratory X-Band Power Supply

RF Source:

- SLAC XL-4 Klystron & Scandinova Modulator
- Rep Rate: 120 Hz max
- Flatness: 0.1%
- Shot-to-Shot: 0.01%
- Phase: <0.5°

- Re-design based on CLIC T24
- À = 11.424 GHz
- Brazed (not diffusion bond.)
- Tuned and ready for high power RF tests
- X-band linearizer for SXFEL (operational) - 1m structure (20 MV/m) - Max gap voltage reached 15 MV
 - 6 MW klys. with pulse comp.
 - Mov. support (1mm accuracy)

20-cells TDC

- 11.994 GHz - Freq.
- Length 230 mm
- Iris apert. 8 mm
- 6222 $-\mathbf{Q}_{0}$ - Tf
 - 21 ns
- 152 MV/m - Epks

Spherical X-band PC

- $-\dot{A} = 11.424 \text{ GHz}$
- Mode TE₁₁₄
- Q₀ = 95000
- S = 4.6
- Peak power fact. = 6.4

1m accelerating unit (80 MV/m)

- $-\dot{A} = 11.424 \text{ GHz}$
- Effective Length = 944.73 mm
- Phase advance = $4\pi/5$
- Aperture radius = 4.3-3.05
- Filling time = 150 ns
- Input power P_{in} = 80MW@80MV/m

TTX (Tsinghua Thomson X-ray source)

- > Use X-band structures (80 MV/m) to upgrade the beam energy from 50 MeV to 150 MeV
- > One 50 MW-1.5ms klystron + RF pulse compressor for single bunch operation mode

- > 2.5 cell standing wave design, operated at π mode.
- > The goal of cathode gradient: 200 MV/m
- > Max E-field at the tip \approx 1.2 GV/m

Accel. Struct. prodution & test

Total rf-on time about 3,600 h $(6.47 \times 10^8 \text{ rf pulses})$ Good high-gradient performance (reached 110.2 MV/m)

Validate the fabrication capability of Tsinghua Univ. for Xband high-gradient structures

H.G. choke-mode damped X-band structure (collab. with KEK and CERN)

RF test at Nextef (KEK) reached 123 MV/m

11. Arg p aperting shuu c

parameters		value
frequency	f_0 (GHz)	11.7
phase advance	φ (DEG)	120
aperture diameter	2a (mm)	17.6
group velocity	v_g/c	0.22
shunt impedance	R/Q (k Ω/m)	3.92
length	L (cm)	30
quality vactor	Q	6500

CLIC-T24-Open: 100 MV/m C12-Open (at Tsinghua): 87 MV/m

Accelerating structure for TBA at ANL

Courtesy J. Shi

EAC

Diagnostics & beam manipulation

Phase space linearizers_FERMI & SwissFEL

Elettra Sincrotrone Trieste

FERMI & SwissFEL linearizers

LCLS linearizer

CLARA linearizer

Courtesy L. Cowie

4th European Advanced Accelerator Concepts Workshop, 15-21 September 2019, Hotel Hermitage, Isola d'Elba, Italia

The Transverse Cavity (TDC) technique is now a well established diagnostic tool at the X-ray FELs to measure sub-ps temporal bunch profiles.

The diagnostics is further enhanced if the deflected beam is observed on an energy spectrometer screen, where the energy dispersion is in the plane perpendicular to the RF deflection. The dispersion properties of the dipole allow for the complete characterization of the energy distribution of each bunch slice reconstructing the longitudinal phase space.

4th European Advanced Accelerator Concepts

Workshop, 15-21 September 2019, Hotel Hermitage, Isola d'Elba, Italia

The dependence on wavelength and gradient suggest that going from S to X band the resolution can be improved by a factor of 4 from the wavelength (10 cm \rightarrow 2.5 cm) and at least another factor of 2 from the gradient!!!

Courtesy P. Krejcik

TDC downstream LCLS undulator

Workshop, 15-21 September 2019, Hotel Hermitage, Isola d'Elba, Italia

PolariX: a CERN-DESY-PSI collaboration for the development of a TDS with variable polarization

Single-shot characterization of the beam longitudinal phase space, i.e. slice emittance and 3D charge density distribution.

• 0 degree -> vertical polarization

Variable polarization circular TE11 mode launcher: E-rotator

4th European Advanced Accelerator Concepts Workshop, 15-21 September 2019, Hotel Hermitage, Isola d'Elba, Italia

- > RF cavity design done at CERN (A. Grudiev).
- > Prototype assembled at PSI (using the tuning free assembly procedure).
- > Beam tests will be done at DESY.
- > Installations:
 - ✓ ATHOS beamline at SwissFEL
 - ✓ FLASHForward, FLASH2, SINBAD at DESY

Courtesy R. Zennaro

Constant Impedance, back-wards travelling wave structure

Cell parameter		Unit	
Frequency	11995.2	MHz	
Phase advance/cell	120	0	
Iris radius	4	mm	
Iris thickness	2.6	mm	
Group velocity	-2.666	%c	
Quality factor	6490		
Shunt impedance	50	$M\Omega/m$	
TDS parameter	Short	Long	Unit
n. cells	96	120	
Filling time	104.5	129.5	ns
Active length	800	1000	mm
Total length	960	1160	mm
Power-to-voltage	5.225	6.124	$MV/MW^{0.5}$
TDS + BOC	Short	Long	Unit
BOC Q ₀	145000	145000	
BOC $\beta@t_k=1.5\mu s$	7	7	
Power-to-voltage	12.010	13.626	$MV/MW^{0.5}$

Klystron output power and defl. voltage (including the waveguide losses):

- 25 MW \rightarrow Vt > 55 MV (one TDS, resolution $\tilde{0}$ 0.78 fs)
- 25 MW → Vt > 79 MV (2 TDS resolution Õ 0.54 fs)

Courtesy R. Zennaro

XBOC (no tuning required)

PolariX and XBOC in X-BOX

X-band waveguide comp. Under

production:

- H-E Bends
- Splitters
- Vacuum ports
- Directional couplers
- Phase shifter
- BOC (XBOC)

 Measured parameters

 À
 1995.2 at 41.2 °C

 Q0
 157800

 Beta
 7.88

 Max. refl.
 -31 dB

Courtesy R. Zennaro

- After an initial period of growth driven by linear collider, in the last years the X-band band technology has received renewed interest.
- ✓ With the proliferation of smaller-scale applications, the community of high gradient X-band users is nowadays continuously growing.
- ✓ For the X-ray community, the X-band technology represents a great opportunity for many labs to implement very compact and cost effective photon facilities.

My sincere thanks to the many colleagues who provided me information and data about their projects/activities.

In particular the members of the CompactLight Collaboration and colleagues from SLAC, KEK, LLNL and Tsinghua University.

Thank you for your attention!

