WGS: Plasma devices, plasma and beam
diagnostics
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WGS topics

e Plasma diagnostics

o Cold plasma

o Wakefield characterisation

o Plasma optimisation

o Post-plasma characterisation
e Beam diagnostics

o Charge and energy

o Transverse diagnostics

o Longitudinal diagnostics
o Machine learning

e Plasma applications



Cold plasma characterisation

. Plasma density and evolution diagnosed
with two methods: Two colour laser
interferometry and atomic emission
spectroscopy

. Excellent agreement between two
methods

« Spectroscopy used to image the
temporal evolution of the longitudinal
profile, essential for high impact
publications

(thanks J. Garland)
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Cold plasma characterisation
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Self-modulation of the long AWAKE proton bunch can be used to infer the plasma
wavelength
By varying the arrival of the proton beam relative to the seed laser the evolution of the
plasma column be inferred from the variation in modulation
Comparison to analytic formalisms are as expected, with density decaying as t*{-1/2}
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Wakefield characterisation EZIeis:is

o Multi pulse laser system used to perform frequency domain holography on a
temporally evolving plasma.

o Pressure is varied with the temporally encoded spectral shifting extracted, resulting in
a timing scan.

o Comparison of results for Hydrogen and Deuterium are preliminary but give an
indication of the lifetime of ion motion — important for high rep. rate.
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Wakefield characterisation HI JENA

Helmholtz Institute Jena

Rotate the laser polarisation to two different values. The laser

then undergoes an additional rotation from the azimuthal

magnetic fields of the electron bunch/bubble... then subtract

Evolution of the LWFA process can be recorded by delaying the e
arrival time of the laser

first plasma period (bubble)
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Wakefield characterisation

This technique can also lead to
unexpected results...

Asymmetric Raman scattering with
interesting modulations observed,
with the magnitude and direction
seemingly dependent on the chirp of
the laser

Incorporating the chirp-based tilted
phase front into the analytical
formalisms looks like it could explain
the observations. More results to
come...
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Plasma process optimisation
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« It's not just the plasma acceleration length requiring attention. 1F7° .
Beam quality (emittance) will be degraded if the beam isn’t . -
transversely matched to the plasma. I ................ Witness

o These matched values are incredibly small so why not use a
plasma ramp in the blowout regime as a passive plasma lens
to focus the beam down further

o Proposed to be used at Beta function evolution at n= 0,34 x10Tcm-2
FACET-Il with promising
simulation results
demonstrated
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S. Bohlen reported on comparisons between ICT-based’ and
cavity-based charge measurements, showing that cavity based
measurements are less sensitive to EMP.

He also reported on energy measurements based on Thomson
scattering.

S. Jaster-Merz reported on that application of ATLAS' silicon strips
detectors for a spectrometer.
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(thanks S. Corde)

Transverse diagnostics °
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Several speakers reported that mismatched beams may lead
to emittance blow up and filamentation.

Solutions to measure this mismatch have been presented.
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e S. Corde proposed to use gamma-rays to measure this. I
e K. Hunt-Stone proposed an EOS based BPM.

e A. Curcio reported on Cerenkov diffraction based BPM.

(Courtesy K. Lekomtsev)
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(thanks F. Bisesto)

Longitudinal diagnostics (1/2)

F. Bisesto reported on the use of EOS to distinguish

protons from fast electrons.

K. Hunt-Stone also reported that EOS BPMs give
information on the longitudinal profile.

P. Gonzalez reported on a 12Ghz TDS being
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Longitudinal diagnostics (2/2)

O. Zarini used CTR to diagnose ultra-short bunches (FWHM

Peak

= 22 fs) from various injection methods. Sub-fs structures can —_— (thanks A. Curcio)

be resolved. Microbunching observed. Combined with point i

spread function measurement, could be used for 3D :: © ®
reconstruction. "

A. Curcio reported on a study of several coherent radiation ::

phenomena at CLEAR. 02} . )

Studies show that EM shadowing was not observed despite oo e ccion —
the position been well between the formation length. —

.. (thanks A. Curcio)
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Coherent transition radiation HZDR

o Ultra-short bunches can be, and are, generated from PWFA methods. These bunches need
to be diagnosed, ideally in a non-invasive way.

o Coherent transition radiation (CTR) — a well understood diagnostic technique — was
implemented at HZDR to diagnose ultra-short bunches (FWHM = 22 fs) from various
injection methods. Sub-fs structures can be resolved. Microbunching observed.

o Combined with point spread function measurement, could be used for 3D reconstruction.
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Machine Learning

Predict what the output of a diagnostic would look like when it is unavailable

“Real-time” prediction of beam

Fast physics-based simulation ML model
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(thanks C. Emma) (thanks C. Emma)
M. Hogan on behalf of C. Emma introduced the concept of virtual diagnostics
where beam properties are inferred by machine learning. And it works!

Does ML know more than us about the beam?
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Active Plasma lenses

E. Adli reported on studies of aberrations in active
plasma lenses and suggested a model to explain
non-linearities. Ultimate goal is to build a lattice of

active plasma lenses.

J. Bin reported on the use of plasma lenses to focus

Active plasma lens principle

(Thanks E. Adli) |

protons.
(Thanks J.Bin)
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Figure: J. van Tilborg et al.
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Plasma applications RLASHRorAard

Plasma cell

FLASH gun and FLASHF d Dipole
Iinic \ orwer - spectrometer

A

(thanks R. D’Arcy)

o Once these plasma sources are understood and
optimised their ultra-high gradients can be
leveraged for novel applications

o As well as plasma lenses, strong focus has been
placed on plasma dechirpers (three PRLs this year)

« Decelerating phase of the wakefield can be used to
remove a large correlated energy spread at
unprecedented levels, essential for e.g. the chirp
developed in a non-beam loaded PWFA scheme
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Thanks to Alessandro, the
organisation committee, and
everyone who contributed to WG5*!



