Summary on alignment test beam 2018

MUonE meeting 04/12/2018

A. Principe

Test beam apparatus

MUonE configuration @ 02/05

- Strip pitch: 242 um
- Nominal point resolution ~ 35-40 um
- from 4/05: 3 upstream boxes
- from 27/06: no target 2
- from 20/08: new box 8 and 3

Alignment procedure

• We have chosen an histogram-based procedure suitable for small apparatus, like test beams: with some changes, we have adapted the algorith used for the test beam 2017.

• With single muons along all apparatus:

- This procedure is **iterative** and can only converge if two layers per view are chosen as references.
- This is a drawback, as we have seen that all layers have more or less some misalignments.
- Only a posteriori it's possible to check the bias introduced by these reference planes (next slides).

Before alignment: example of layer problems

x / y shifts and intrinsic resolution

- A position resolution of roughly 37-47 micron is indicated as a reference in (1).
- AGILE readout strip pitch: 242 um with "floating strip" (2).
- So geometrical tracker resolution is: 242/2 / sqrt(12) = 34.9 micron. -

After refinements, some sigma < 30 um:
 26 / 25 um for 7y / 8x (next slides).

- (1) <u>https://www.lnf.infn.it/acceleratori/public/BTF_user/AGILE/nima490agile.pdf</u>
- (2) https://www.lnf.infn.it/acceleratori/public/BTF_user/AGILE/nima501agile.pdf

z rotations

Tilt correction

• We have some sensibility also on tilts (rotations along y / x axis): second-order corrections.

Tilt correction of 9y

- The positive correlation disappears and small improvements on residual.
- Given the large amount of these rotations, it is not possible to correct them iteratively. We are outside the linearity of the corrections.

Stereo layers alignment

• residuals:

 $res_i = hits_i - \left[\cos\beta(a_x z_i + b_x) - \sin\beta(a_y z_i + b_y)\right] + c_i$

alignment (in uv direction):

 $\begin{aligned} hits'_{i} &= hits_{i} - r_{i} - a_{i} \cdot hits_{j} \\ \implies & r_{i} \text{ from } res_{i} \\ \implies & a_{i} \text{ from } res_{i} \text{ vs } hits_{j} \end{aligned} \qquad \begin{array}{l} j = 13y \text{ for both} \end{array}$

Stereo planes rotations

10

11y 14x views

$$[11y] = \sqrt{2} [11u] - [12x] + (2 - \sqrt{2})c$$
$$[11y]' = [11y] - r_{11y} - a_{11y} \cdot [12x]$$
$$[14x] = \sqrt{2} [14v] + [13y] - \sqrt{2}c$$
$$[14x]' = [14x] - r_{14x} - a_{14x} \cdot [13y]$$

 $c = 4.75 \, cm$

$$r_{11y} = 0.2328 \, cm$$
 $a_{11y} = -0.00024 \, rad$
 $r_{14x} = 0.5081 \, cm$ $a_{14x} = 0.00020 \, rad$

Alignment 11y

Final checks

Layer resolution % bad hits

$\sigma_{residual}$		Cutted hits % (with mask)		
1y 2v	49 µm	1 <i>y</i>	~34%	
2x	38 µm	2x	~13%	
Зу	43 µm	Зу	~6%	
4x	40 µm	4x	~3%	
5y	31 µm	5у	~19%	
6x	32 µm	6x	~10%	
7y	26 µm	7y	~7%	
8x	25 µm	8x	~5%	
9у	28 µm	9у	~4%	
10x	40 µm	10x	~65%	
11y	39 µm	11y	~1%	
12x	25 µm	12x	~1%	
13y	31 µm	13y	~8%	
14x	41 µm	14x	~1%	
15y	45 µm	15y	~5%	
16x	48 µm	16x	~16%	

- With a fit for all planes, we checked layer efficiencies, resolutions and also residual misalignments of planes chosen as a reference (5-6 and 15-16).
- Reference shifts in x / y: within 1 um.
- Reference rotations along z axis within 0.1 mrad: more accurate checks would have been necessary.
- Anyway the choice of reference planes can introduce bias which can difficult to correct, especially if the misalignments are large, as in this case.

Conclusions

MUonE configuration @ 02/05

- from 4/05: 3 upstream boxes
- from 27/06: no target 2
- from 20/08: new box 8 and 3
- Provided distances up to 20/08 contain an error:
 -2 mm for layers 1 2 3 4.
- I only checked the effect on tracking a posteriori, without re-aligning all samples uploaded on eos.

- z distances <u>in cm</u>.
- reference zero: bottom edge BOX8

<u>before 20/08 (in cm):</u>

z(01) $-2.40 \rightarrow$ stereo (u) -0.30 z(02) -2 mm! z(03)= 15.60 - 2.50 z(04)= 15.60 -0.50 z(05)= 50.00 -2.50 z(06)= 50.00 -0.50 z(07)= 71.40 -1.50 z(08)= 71.40 -0.33 z(09)=117.00 -2.50 z(10)=117.00 -0.50 $z(11)=126.90 - 1.83 \rightarrow stereo(u)$ z(12)=126.90 -0.50 z(13)=148.10 -0.34 $z(14)=148.10 - 1.56 \rightarrow \text{stereo} (v)$ z(15)=198.10 -1.00 z(16)=198.10 -2.30

Backup

Layer problems: some examples

- Almost all layers show inefficiency problems: it's very clear the ASIC structure.
- In the next slides a quantitative efficiency analysis.
- We've correlated some of these problems with the high beam intensity relatively to the apparatus readout.
- Layers 1u and 10x have been changed at the end of August (test beam is running from May).
- In these slides new setup (new boxes) are not shown.

Layer problems: plane 5y

- Situation of 5y trackers (upstream) pre-correction: noisy behavior and shift of central ASIC. Also the resolution at the center is significantly different (sigmas plot).
- As other planes, many dead strips which induce a bad reco of nearest strips.

Alignment 11u pre tilt correction

Correlation (tilt-like) between res11u and hits11u, induces a correlations res11u vs hits12x, which appears like a relative rotation. Correction: Hits11u' = (1-0.001244)*Hits11u. It's not possible to apply it iteratively.

Alignment 11u post correction

• Hits11u' = (1-0.001244)*Hits11u. The residual and other correlations improve significantly: 34 um -> 27 um.

Efficiencies analysis: hit / event

Layer resolution		% bad hits		Hit eff	
$\sigma_{residual}$		Cutted hits % (with mask)		$\frac{\epsilon_{3.28\sigma}}{\chi_x^2 + \chi_y^2} < 26$	
1y 2x	49 μm 38 μm	1y 2x	~34% ~13%	•	ly chi2, <u>mask)</u>
Зу 4х	43 μm 40 μm		~6% ~3%	1y 2x	94.6% 95.1%
5y 6x	31 μm 32 μm	,	~19% ~10%	3y 4x	73.9% 76.8%
-	26 μm 25 μm		~7% ~5%	5y 6x	98.6% 98.8%
9у 10х	28 μm 40 μm	,	~4% ~65%	7y 8x	96.1% 96.7%
-	39 μm 25 μm	-	~1% ~1%	9y 10x	
-	31 μm 41 μm		~8% ~1%	11y 12x	98.2% 98.4%
		-	~5% ~16%	•	94.8% 94.3%
				15y	82.1%

Event efficiencies
downstream planes7y67.5%
8x8x54.4%9y78.2%
10x10x25.0%11u81.3%
12x12x88.6%13y83.8%
14v14v79.5%15y80.6%
16x

4 runs only T1
2x-3y-4x-5y-6x (m==1)
11111 T: 18.4e+06 incoming muons

Taking in coincidence 3 best layers per view:
(11u-12x-13y-14v-15y-16x)

0.81*0.89*0.84*0.80*0.81*0.85 ~ 33%

(best event eff)

With the worst:

(7y-8x-9y-10x-15y-16x)

0.68*0.54*0.78*0.25*0.81*0.85 ~ 5% (worst event eff)

16x 83.4%