Summary on alignment test beam 2018

MUonE meeting
 04/12/2018

A. Principe

Test beam apparatus

MUonE configuration @ 02/05

AGILE sensors

- Strip pitch: 242 um
- Nominal point resolution ~ 35-40 um
- from 4/05: 3 upstream boxes
from 27/06: no target 2
- from 20/08: new box 8 and 3

Alignment procedure

- We have chosen an histogram-based procedure suitable for small apparatus, like test beams: with some changes, we have adapted the algorith used for the test beam 2017.
hits $_{i}^{\prime}=$ hits $_{i}-r_{i}-a_{i} \cdot$ hits $_{j}$
$\Longrightarrow \quad r_{i}$ from resi
$\Longrightarrow a_{i}$ from res $_{i}$ vs hits ${ }_{j}$

- This procedure is iterative and can only converge if two layers per view are chosen as references.
- This is a drawback, as we have seen that all layers have more or less some misalignments.
- Only a posteriori it's possible to check the bias introduced by these reference planes (next slides).
- With single muons along all apparatus:

Before alignment: example of layer problems

x / y shifts and intrinsic resolution

- From residual distributions can be disentangled multiple scattering effect and point silicon resolution: in this case, as a first approximation (->180-190 GeV muons), residuals sigma can be considered the intrinsic resolution of silicon trackers.

- A position resolution of roughly 37-47 micron is indicated as a reference in (1).
- AGILE readout strip pitch: 242 um with "floating strip" (2).
- So geometrical tracker resolution is: 242/2 / sqrt(12) = $\mathbf{3 4 . 9}$ micron.
- After refinements, some sigma < 30 um: 26 / 25 um for 7y / 8x (next slides).
(1) https://www.Inf.infn.it/acceleratori/public/BTF user/AGILE/nima490agile.pdf
- (2) https://www.Inf.infn.it/acceleratori/public/BTF user/AGILE/nima501agile.pdf

z rotations

Alignment summary

- shifts in x / $y<5 \mathbf{~ m m}$ corrected within 1 um.
- rotations along z axis < 5-6 mrad, corrected within 0.1 mrad.

Tilt correction

- We have some sensibility also on tilts (rotations along y / x axis): second-order corrections.

(This tilt angle deduced from correlation looks like compatible with layers distances).

Tilt correction of 9 y

- The positive correlation disappears and small improvements on residual.
- Given the large amount of these rotations, it is not possible to correct them iteratively. We are outside the linearity of the corrections.

Stereo layers alignment

- residuals:

$$
\begin{aligned}
\text { hits }_{i}^{\prime} & =\text { hits }_{i}-r_{i}-a_{i} \cdot \text { hits }_{j} \\
& \Longrightarrow r_{i} \text { from res } \\
& \Longrightarrow a_{i} \text { from res } \\
& \text { vs hits } \\
& \Longrightarrow j=13 y \text { for both }
\end{aligned}
$$

Stereo planes rotations

Hits12x:Hits14v

Hits13y:Hits14v

11y 14x views

- Iteratively rotations of planes $11 \mathrm{u} / 14 \mathrm{v}$

$$
\begin{gathered}
{[11 y]=\sqrt{2}[11 u]-[12 x]+(2-\sqrt{2}) c} \\
{[11 y]^{\prime}=[11 y]-r_{11 y}-a_{11 y} \cdot[12 x]} \\
{[14 x]=\sqrt{2}[14 v]+[13 y]-\sqrt{2} c} \\
{[14 x]^{\prime}=[14 x]-r_{14 x}-a_{14 x} \cdot[13 y]}
\end{gathered}
$$

$$
c=4.75 \mathrm{~cm}
$$

$$
\begin{array}{r}
r_{11 y}=0.2328 \mathrm{~cm} \quad a_{11 y}=-0.00024 \mathrm{rad} \\
r_{14 x}=0.5081 \mathrm{~cm} \quad a_{14 x}=0.00020 \mathrm{rad}
\end{array}
$$

Alignment 11y

Rotated hits (of 45°) becomes 11 y .
Obviously 11y residual has higher sigma than 11u: 27 um -> 41 um.

Final checks

Layer resolution \% bad hits

$\sigma_{\text {residual }}$	Cutted hits \% (with mask)	
1y $49 \mu m$	19	~34\%
$2 \times 38 \mu m$	$2 x$	$\sim 13 \%$
$3 y \quad 43 \mu m$	$3 y$	~6\%
$4 \times \quad 40 \mu m$	$4 x$	$\sim 3 \%$
5y $31 \mu \mathrm{~m}$	$5 y$	~ 19\%
$6 x \quad 32 \mu m$	$6 x$	~ 10\%
$7 y \quad 26 \mu m$	$7 y$	$\sim 7 \%$
$8 \times 25 \mu m$	$8 x$	$\sim 5 \%$
9y $28 \mu \mathrm{~m}$	$9 y$	$\sim 4 \%$
10x $40 \mu \mathrm{~m}$	10x	$\sim 65 \%$
11y $39 \mu m$	11y	$\sim 1 \%$
12x $25 \mu \mathrm{~m}$	12x	$\sim 1 \%$
13y $31 \mu \mathrm{~m}$	13y	$\sim 8 \%$
$14 \times 41 \mu m$	$14 x$	$\sim 1 \%$
$15 y 45 \mu m$	15y	$\sim 5 \%$
16x $48 \mu \mathrm{~m}$	16x	$\sim 16 \%$

- With a fit for all planes, we checked layer efficiencies, resolutions and also residual misalignments of planes chosen as a reference (5-6 and 15-16).
- Reference shifts in x / y : within 1 um.
- Reference rotations along z axis within 0.1 mrad: more accurate checks would have been necessary.
- Anyway the choice of reference planes can introduce bias which can difficult to correct, especially if the misalignments are large, as in this case.

Conclusions

MUonE configuration @ 02/05

from 4/05: 3 upstream boxes
from 27/06: no target 2
from 20/08: new box 8 and 3

- Provided distances up to 20/08 contain an error:
-2 mm for layers 1-2-3-4.
- I only checked the effect on tracking a posteriori, without re-aligning all samples uploaded on eos.
z distances in cm.
- reference zero: bottom edge BOX8
before 20/08 (in cm):

$z(01) \quad-2.40 \rightarrow$ stereo (u)	
$z(02)$	-0.30
$z(03)=15.60-2.50 \quad-2 \mathrm{~mm}$	
$z(04)=15.60-0.50$	
$z(05)=50.00-2.50$	
$z(06)=50.00-0.50$	
$z(07)=71.40-1.50$	
$z(08)=71.40-0.33$	
$z(09)=117.00-2.50$	
$z(10)=117.00-0.50$	
$z(11)=126.90-1.83 \rightarrow$ stereo (u)	
$z(12)=126.90-0.50$	
$z(13)=148.10-0.34$	
$z(14)=148.10-1.56 \rightarrow$ stereo (v)	
$z(15)=198.10-1.00$	
$z(16)=198.10-2.30$	

Backup

Layer problems: some examples

- Almost all layers show inefficiency problems: it's very clear the ASIC structure.
- In the next slides a quantitative efficiency analysis.
- We've correlated some of these problems with the high beam intensity relatively to the apparatus readout.
- Layers 1u and 10x have been changed at the end of August (test beam is running from May).
- In these slides new setup (new boxes) are not shown.

Layer problems: plane 5y

- Situation of 5y trackers (upstream) pre-correction: noisy behavior and shift of central ASIC. Also the resolution at the center is significantly different (sigmas plot).
- As other planes, many dead strips which induce a bad reco of nearest strips.

Alignment 11u pre tilt correction

- Correlation (tilt-like) between res11u and hits11u, induces a correlations res11u vs hits $12 x$, which appears like a relative rotation. Correction: Hits11u' $=\mathbf{(1 - 0 . 0 0 1 2 4 4)})^{*} H i t s 11 u$. It's not possible to apply it iteratively.

Alignment 11u post correction

- Hits11u' $=(\mathbf{1 - 0 . 0 0 1 2 4 4})^{\star}$ Hits11u. The residual and other correlations improve significantly: 34 um -> 27 um.

Efficiencies analysis: hit / event

