
Foundation of Parallel I/O
Ivan Girotto – igirotto@ictp.it

International Centre for Theoretical Physics (ICTP)

Data Distribution Recap /1

Data Distribution Recap /2

P0

NY

NX

P0 P1 P2 P3

MPI_Scatter(…)

Sequential I/O on Distributed Data /1

P0

NY

NX P0 P1 P2 P3

MPI_Gather(…)

P0

NY

NX

Sequential I/O on Distributed Data /2

File
System

I/O Bandwidth

Data are finally saved in the disk like on the model.cpp
code by using HDF5. By collecting all data on a single
process we are implementing a strong data size scaling
limitation!

Data Distribution Recap /3

P0 P1 P2 P3

NY

NX_loc NX_loc NX_loc NX_loc

We now want to keep data distributed into memory with never collecting data
on a single processor to achieve massively data size scaling!!

Data Distribution Recap /4

P0 P1 P2 P3

The lucky case: NX % nprocs == 0 !!!

NY

NX

NX_loc NX_loc NX_loc NX_loc

NX_loc = NX / nprocs;
nx_start = NX_loc * rank;

Data Distribution Recap /6

P0 P1 P2 P3

The unlucky case: NX % nprocs != 0 !!!

NY

NX

NX_loc NX_loc NX_loc NX_loc

NX_loc = NX / nprocs;
rest = NX % nprocs;
nx_start = NX_loc * rank;
If (me == nprocs – 1) NX_loc += rest;

Data Distribution Recap /6

P0 P1 P2 P3

The unlucky case: NX % nprocs != 0 !!!

NY

NX

NX_loc NX_loc NX_loc NX_loc

NX_loc = NX / nprocs;
rest = NX % nprocs;
nx_start = NX_loc * rank;
If (me == nprocs – 1) NX_loc += rest;

Example:
NX = 1400000;
nprocs = 480;

Data Distribution Recap /6

P0 P1 P2 P3

The unlucky case: NX % nprocs != 0 !!!

NY

NX

NX_loc NX_loc NX_loc NX_loc

NX_loc = NX / nprocs;
rest = NX % nprocs;
nx_start = NX_loc * rank;
If (me == nprocs – 1) NX_loc += rest;

Example:
NX = 1400000;
nprocs = 480;
NX_loc = 291

Data Distribution Recap /6

P0 P1 P2 P3

The unlucky case: NX % nprocs != 0 !!!

NY

NX

NX_loc NX_loc NX_loc NX_loc

NX_loc = NX / nprocs;
rest = NX % nprocs;
nx_start = NX_loc * rank;
If (me == nprocs – 1) NX_loc += rest;

Example:
NX = 1400000;
nprocs = 480;
NX_loc = 291;
rest = 320;
NX_loc (nprocs – 1) = 611!!

NO WAY!!!!

Data Distribution Recap /5

P0 P1 P2 P3

The unlucky case: NX % nprocs != 0 !!!

NY

NX

NX_loc NX_loc NX_loc NX_loc

NX_loc = NX / nprocs;
rest = NX % nprocs;
If (me < rest) NX_loc += 1;
nx_start = NX_loc * rank;
If (me >= rest) nx_start += rest;

P0 P1 P2 P3

NY

NX_loc NX_loc NX_loc NX_loc

We now want to save data on the disk but we do not have
a parallel file system!

Sequential I/O on Distributed Data /3

P0 P1 P2 P3

NY

Sequential I/O on Distributed Data /4

File
System I/O Bandwidth

P0 P1 P2 P3

NY

Sequential I/O on Distributed Data /4

File
System I/O Bandwidth

P0 P1 P2 P3

NY

Sequential I/O on Distributed Data /4

File
System I/O Bandwidth

P0 P1 P2 P3

NY

Sequential I/O on Distributed Data /4

File
System I/O Bandwidth

P0 P1 P2 P3

NY

Sequential I/O on Distributed Data /4

File
System I/O Bandwidth

This strategy works in most cases but it
might bring together a significant
unbalance on the I/O process!!

P0 P1 P2 P3

NY

Sequential I/O on Distributed Data: the I/O node

File
System I/O Bandwidth

• A strategy where only one process (node) is dedicated
to perform operations of I/O

• On a MPI based parallelization it requires the creation
of additional communicators

• The I/O process should be isolated on a single node if
allocating much larger memory than others

• For higher scalability multiple I/O can be implemented
§ Non trivial MPI execution model (but possible)

P0 P1 P2 P3

Parallel I/O /1

Parallel I/O: Parallel Reading

• Parallel Reading is always possible

• No concurrent access on data

• All read all => memory scaling issue!!

• It is really efficient when all read a chunk of data
creating a distributed data schema

Parallel I/O: Parallel Reading

• Parallel Reading is always possible

• No concurrent access on data

• All read all => memory scaling issue!!

• It is really efficient when all read a chunk of data
creating a distributed data schema

MPI Data Types!!

MPI_Type_vector(2, 3, 5, MPI_INT, MPI_SUBMAT)

P0 P1 P2 P3

Parallel I/O /1

File
System

I/
O

Ba
nd

w
id

th

File
System

I/
O

Ba
nd

w
id

th

File
System

I/
O

Ba
nd

w
id

th
File

System

I/
O

Ba
nd

w
id

th

Parallel I/O /1

• Every process writes is own file

• Easy to implement as long as every file is identified with a
unique file name

• Makes really difficult to restart with a different number of
processes

• Might create enormous problem at post processing
§ If we need to recreate the whole data-set we need to read the

data again and do what we were supposed to do initially when
data were first moving from memory to disk

§ Possible creation of an enormous number of files. You could
create a problem not only to your self but to the whole
infrastructure

Parallel I/O /2

P0 P1 P2 P3

I/
O

I/
O

I/
OI/
O

Parallel File System
MPI I/O & Parallel I/O Libraries (Hdf5, Netcdf, etc…)

• The Parallel File system provide the utility to write a file from
distributed processes on the storage system

• The intermediate level is essential to avoid learning how to handle
concurrent access to shared file pointes :-o

Parallel I/O: MPI I/O

• Use of MPI routines for parallel I/O

• Interfaces for handling shared access on the same file

• Developers must implement a way to store data accordingly to a
given data layout => MPI data types helps!

P0 P1 P2 P3

Parallel I/O: MPI I/O

• Use of MPI routines for parallel I/O

• Interfaces for handling shared access on the same file

• Developers must implement a way to store data accordingly to a
given data layout => MPI data types helps!

P0 P1 P2 P3

P0 P1 P2 P3

P4 P5 P6 P7

Parallel I/O: MPI I/O

• Use of MPI routines for parallel I/O

• Interfaces for handling shared access on the same file

• Developers must implement a way to store data accordingly to a
given data layout => MPI data types helps!

P0 P1 P2 P3

P0 P1 P2 P3

P4 P5 P6 P7

Parallel I/O: MPI I/O

• Use of MPI routines for parallel I/O

• Interfaces for handling shared access on the same file

• Developers must implement a way to store data accordingly to a
given data layout => MPI data types helps!

P0 P1 P2 P3

P0 P1 P2 P3

P4 P5 P6 P7

Good Luck with 3D!!!!

Parallel I/O: HDF5

• You don’t need much more of what you have seen yesterday!!

• Add a call to to the H5Pset_dxpl_mpio to tell HDF5 you are going to use

Parallel I/O

plist_id = H5Pcreate (H5P_FILE_ACCESS);

hdf5_status = H5Pset_fapl_mpio (plist_id, MPI_COMM_WORLD, MPI_INFO_NULL);

• The hyperslab is still used to described the distributed dataset

• Remember to define a good balance about what to write in every single
file (i.e., trajectories, temporal dynamics, time evolution, ecc.)

§ Few files containing large data

§ A lot of files containing few data

Parallel I/O: possible approaches

1. Open and close the file every time for writing/reading data (inefficient)

2. Open and close the a different file every time for writing data
(inefficient but sometime a good compromise)

3. Open the file for several writing/reading access data
v In general more efficient because aiding the I/O system buffering

v In writing file can become really big (hard to post-process)

4. Buffer in memory several I/O writing to perform less accesses to the file
system with larger dumps from memory to disk (really efficient but
requires experience for maintaining a scalable design)

Parallel I/O: performances

* Curtesy of Carlo Cavazzoni (CINECA)

