

LNF GENERAL SEMINAR

lituto nazioliale di fisica nucleare

PHOTON PHOTON INTERACTION VIA PSEUDOSCALAR FIELDS

Evgeny Kozyrev

Budker Institute of Nuclear Physics

Novosibirsk State University

Outline

- Introduction
 - Photon-photon interaction
 - The definition of $P_{\gamma\gamma}$ transition form factor (TFF)
 - Theoretical aspects
 - Existing experimental data
- The recent measurement of the TFF of η' meson with BaBar detector. Comparison with theoretical predictions
- \Rightarrow Prospects for such investigations with KLOE-2
- Summary

Introduction.

The Twin Quasar QSO 0957+561, which lies 7.8 billion light-years from Earth, is seen right in the center of this picture.^[1]

 $\begin{aligned} \mathcal{A} \approx \frac{1}{hs} \implies \mathcal{C} < \frac{1}{\lambda \cdot n} = \frac{1}{\alpha \cdot 10^4} = \frac{1}{10 \cdot 10^3 \cdot 3 \cdot 10^8 \times 10^7 \cdot 10^4} \approx 10 \\ \mathcal{P}_{0} \approx 4 \cdot 10^{26} W \approx \frac{10^{45} \text{ photons}}{s} \\ \mathcal{N}_{stars} \approx N_{galaxies} \cdot N_{galaxy} \approx 10^3 \cdot 10^{10} \end{aligned} \qquad \mathcal{P}_{total} \approx \frac{10^{65} \text{ photons}}{s} \\ \mathcal{N}_{stars} \approx \frac{10^{65} \cdot 10 \cdot 10^3 \cdot 3 \cdot 10^7}{\alpha^3} \approx 10^4 \text{ photons} \\ \mathcal{N} \approx \frac{10^{65} \cdot 10 \cdot 10^3 \cdot 3 \cdot 10^7}{\alpha^3} \approx 10^4 \text{ photons} \\ \mathcal{M}_{stars} \approx N_{galaxies} \cdot N_{galaxy} \approx 10^4 \text{ photons} \end{aligned}$

Introduction.

The Twin Quasar QSO 0957+561, which lies 7.8 billion light-years from Earth, is seen right in the center of this picture.^[1]

3 ~ 10 m2 **QED** 10⁻⁶⁸ m² for visible photons 10⁻³⁴ m² for 100 GeV photons with CMB

The limit justifies that a photon does not interact with another photon in classical electrodynamics as a fact of the linearity of Maxwell equations.

Introduction.

The Twin Quasar QSO 0957+561, which lies 7.8 billion light-years from Earth, is seen right in the center of this picture.^[1]

3 ~ 10 m2 $\lambda \approx \frac{1}{16} = 76 < \frac{1}{\lambda \cdot n} = \frac{1}{\alpha \cdot 10^4} = \frac{1}{10 \cdot 10^9 \cdot 3 \cdot 10^8 \cdot 11 \cdot 10^7 \cdot 10^4}$ $P_{\odot} \approx 4.10^{26} W \approx \frac{10^{45} \text{ photons}}{\text{s}}$ $N_{\text{stars}} \approx N_{\text{galaxies}} N_{\text{galaxy}} \approx 10^{9} \cdot 10^{10} \text{ P}_{\text{total}} \approx \frac{10^{65} \text{ photons}}{\text{s}}$ $10^{-68} \text{ m}^2 \text{ for}$ **QED** 10⁻⁶⁸ m² for visible photons $h \approx \frac{10^{65} \cdot 10 \cdot 10^3 \cdot 3 \cdot 10^7}{\alpha^3} \approx 10^4 \frac{\text{photons}}{\text{m}^3}$ 10⁻³⁴ m² for 100 GeV photons with CMB

The limit justifies that a photon does not interact with another photon in classical electrodynamics as a fact of the linearity of Maxwell equations.

Introduction. Kinematics. Equivalent photon flux.

$$P = p - p^{2}$$

$$Q^{2} = (p - p^{2})^{2} = p^{2} + p^{2} - 2pp^{2} = 2m_{e}^{2} - 2$$

$$Q^{2} = (p - p^{2})^{2} = p^{2} + p^{2} - 2pp^{2} = 2m_{e}^{2} - 2$$

$$Q^{2} = (p - p^{2})^{2} \approx -2 \varepsilon \varepsilon^{2} (1 - \cos \theta)$$

$$Q^{2} = -q^{2} = 4 \varepsilon \varepsilon^{2} \sin^{2} \theta$$

$$dn_{\gamma}(x,\mathbf{q}_{\perp}) = \frac{\alpha}{\pi^2} \left[1 - x + \frac{1}{2}x^2 - \frac{x^2(1-x)m_e^2}{\mathbf{q}_{\perp}^2 + m_e^2 x^2} \right] \frac{dx}{x} \frac{d^2 q_{\perp}}{\mathbf{q}_{\perp}^2 + m_e^2 x^2}$$

P — pseudoscalar meson $e_{1,2}$ — photon polarization $q_{1,2}$ — 4-momentum of photon **-Q²** = q^2

The amplitude of the $\gamma^*\gamma^* \rightarrow P$ transition:

$$\boldsymbol{A} = \boldsymbol{e}^{2} \boldsymbol{\varepsilon}_{\boldsymbol{\mu}\boldsymbol{\nu}\boldsymbol{\alpha}\boldsymbol{\beta}} \boldsymbol{e}_{1}^{\boldsymbol{\mu}} \boldsymbol{e}_{2}^{\boldsymbol{\nu}} \boldsymbol{q}_{1}^{\boldsymbol{\alpha}} \boldsymbol{q}_{2}^{\boldsymbol{\beta}} \boldsymbol{F}(\boldsymbol{q}_{1}^{2},\boldsymbol{q}_{2}^{2}),$$

• There are a lot of experimental study of pseudoscalar meson production via the fusion of real (**on-shell**) and virtual (**off-shell**) photons $\gamma^*\gamma \rightarrow P: \pi^0, \eta, \eta', \eta_c \dots$

• There are **no** measurements of the double **off-shell** transitions $\gamma^*\gamma^* \rightarrow P$

Introduction. Transition form factor (TFF).

The TFF gives the information about the composite structure of an object.

• The study of the TFF — as a probe of quark content and its interaction — sensitive to SU(3)-breaking effects, to test of the chiral anomaly of QCD, pQCD, ChPTs, decay constants and fundamental mixing parameters, N_c calculation

- Input for light-by-light scattering for muon (g-2) calculation
- Test for lattice calculations
- Test P, CP and C symmetries and search for new physics

All experimental and theoretical efforts can be divided in two parts:

The study of the TFF(0,0) (or equivalently Γ_{vv})

The study of dynamics of $TFF(q_1^2, q_2^2)$

An example of how to reduce the entropy in the world of a huge number of models

M. Poppe, Int. J. Mod. Phys. A 1, 545 (1986):

At present, a major interest of $\gamma\gamma$ physics concerns the answer to the question "do the photons resolve the hadron's structure or not?" In other words: is particle production in $\gamma\gamma$ interactions primarily the production of quark pairs or is the VDM interpretation correct that the photons turn into vector mesons before they interact? In the latter case, two-photon physics would be just a continuation of fixed target hadron scattering experiments, and we would not expect great news to appear.

<mark>A.V. Radyushkin, R. Ruskov, Nuclear Physics B 481 (1996) 625-680:</mark>		VMD	pQCD
$F^{LO} = (q^2 Q^2) = \frac{4\pi}{1} \int \frac{\varphi_{\pi}(x)}{\varphi_{\pi}(x)} dx$	$Q_1^2 \approx 0, Q_2^2 \rightarrow \infty$	$1/Q^2$	$1/Q^2$
$3 \int_{0} xQ^{2} + \bar{x}q^{2} $	$Q_1^2, Q_2^2 \rightarrow \infty$	$1/Q^{4}$	$1/Q^2$

where $\varphi_{\pi}(x)$ is the pion distribution amplitude and $x, \bar{x} \equiv 1 - x$ are the fractions of the pion light-cone momentum carried by the quarks. In the region where both photon virtualities are large: $q^2 \sim Q^2 \gtrsim 1$ GeV², the pQCD predicts the overall $1/Q^2$ fall-off of the form factor, which differs from the naive vector meson dominance expectation $F_{\gamma^*\gamma^*\pi^0}(q^2,Q^2) \sim 1/q^2Q^2 \sim 1/Q^4$. Thus, establishing the $1/Q^2$ power law in this region is a crucial test of pQCD for this process. The study of $F_{\gamma^*\gamma^*\pi^0}(q^2,Q^2)$ over a wide range of the ratio q^2/Q^2 of two large photon virtualities can then provide non-trivial information about the shape of $\varphi_{\pi}(x)$. The most important two-photon processes, realized at the electron-positron low-energy collider

• In double off-shell case at Q² > W_Vm_V: $F_{\eta'}(Q_1^2, Q_2^2) = \frac{F_{\eta'}(0, 0)}{(1 + Q_1^2/\Lambda_P^2)(1 + Q_2^2/\Lambda_P^2)}$ where Λ_p — effective pole mass parameter

$$\begin{split} \mathbf{F}(\mathbf{Q}_{1}^{2},\mathbf{Q}_{2}^{2}) &= \int \mathbf{T}(\mathbf{x},\mathbf{Q}_{1}^{2},\mathbf{Q}_{2}^{2}) \ \boldsymbol{\phi}(\mathbf{x},\mathbf{Q}_{1}^{2},\mathbf{Q}_{2}^{2}) \ \mathbf{dx} \\ \text{x - is the fraction of the meson momentum carried by one of the quarks} \\ \mathbf{T}(\mathbf{x},\mathbf{Q}_{1}^{2},\mathbf{Q}_{2}^{2}) - \text{hard scattering amplitude for } \gamma^{*}\gamma^{*} \rightarrow \text{qqbar} \\ \text{transition which is calculable in pQCD} \\ \boldsymbol{\phi}(\mathbf{x},\mathbf{Q}_{1}^{2},\mathbf{Q}_{2}^{2}) - \text{ nonperturbative meson distribution amplitude} \\ \text{(DA) describing transition P} \rightarrow \text{qqbar} \end{split}$$

$$T_H(x,Q_1^2,Q_2^2) = \frac{1}{2} \cdot \frac{1}{xQ_1^2 + (1-x)Q_2^2} \cdot \left(1 + C_F \frac{\alpha_S(Q^2)}{2\pi} \cdot t(x,Q_1^2,Q_2^2)\right) + (x \to 1-x) + O(\alpha_s^2) + O(\Lambda_{QCD}^4/Q^4)$$

NLO correction [E. Braaten, Phys. Rev. D 28, 3 (1983)]

• The shape (x dependence) of meson DA $\varphi(\mathbf{x}, \mathbf{Q}_1^2, \mathbf{Q}_2^2)$ is unknown, but its evolution with $\mu^2 = \mathbf{Q}_1^2 + \mathbf{Q}_2^2$ is predicted by pQCD:

$$\mu^2 \frac{d}{\mu^2} \phi(x,\mu) = \frac{\alpha_s(\mu)}{2\pi} \int_0^1 dy V(x,y) \phi(y,\mu)$$

At the limit $\mu \rightarrow \infty$ $\phi_P(x,\mu) = A_P 6x(1-x)(1+O(\Lambda_{QCD}^2/\mu^2))$

[S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 7 (1981)]

Introduction. $F(Q_1^2, 0)$ at <u>large</u> Q^2 .

ASY: G. P. Lepage and S. J. Brodsky, Phys. Lett. B 87, 359 (1979)
CZ: V. L. Chernyak and A. R. Zhitnitsky, Nucl. Phys. B 201, 492 (1982)
BMS: A. P. Bakulev, S. V. Mikhailov, and N. G. Stefanis, Phys. Lett. B 508, 279 (2001)

The QCD evolution of the DA is very slow.
 Wider DA corresponds to a higher level of Q²F(Q²) at large Q²

The $\gamma^*\gamma \rightarrow \eta'$ Transition Form Factor

Introduction. $F(Q_1^2, Q_2^2)$ at <u>large</u> Q^2 .

• The form $1/[xQ_1^2+(1-x)Q_2^2]$ is not divergent, so double off-shell transition

FF is **less sensitive to a shape of the meson DA** in comparison to the single off-shell FF.

Pseudoscalar pole contribution to the hadronic light-by-light piece of aµ

Adolfo Guevara, Pablo Roig, JJ Sanz Cillero. Sep 17, 2018. 7 pp.

Conference: C18-06-25.2

e-Print: arXiv:1809.06175

is the largest one. A way to reduce such uncertainty could be by taking into account data form doubly off-shell TFF such as that given by BaBar for the η' -TFF [35]. Considering all possible contributions to the error we get

$$a_{\mu}^{P,HLbL} = (8.47 \pm 0.16_{\text{sta}} \pm 0.09_{1/N_c} {}^{+0.5}_{-0} \text{ asym}) \cdot 10^{-10},$$
 (14)

where the first error (sta) comes from the fit of the TFF, the second from possible $1/N_C$ corrections and the last from the wrong asymptotic behavior estimated through the effects of heavier resonances in the TFF.

• A large number of systematic uncertainties were studied in our previous work where the number of signal events was significantly larger.

[1] [PRD 84, 052001]: P. del Amo Sanchez *et al. (BaBar collaboration),* Phys. Rev. D 84, 052001 (2011) — (126 citations).

dE/dt

+ dE/dt

Synergistic effect:

|dA/dt

Technique

Polar angle distribution for tagged electrons

(positrons)

- The decay chain $\eta' \rightarrow \pi^+\pi^-\eta \rightarrow \pi^+\pi^-2\gamma$ is used
- A total integrated luminosity $L = 469 \text{ fb}^{-1}$
- GGResRc event generator is used [arXiv:1010.5969]. Initial and final state radiative corrections as well as vacuum polarization effects are included. The form factor is fixed to the constant value F(0,0).

The strategy: $dN/dQ^2 \implies d\sigma/dQ^2 \implies |F(Q^2)|$

We require the presense

- at least **two tracks** from *GoodTrackLoose* list passed *LooseElectronMicroSecection*
- at least **two tracks** from *GoodTrackLoose* list passed *TightKMPionMicroSelection*
- at least **two photons** from *GoodPhotonLoose* list $-\varepsilon_v > 30 \text{ MeV}$

```
-0.45 < m_{_{\rm VV}} < 0.65 \text{ GeV}/c^2
```

-The photon candidates are fitted with a η mass constraint.

• The $\,\eta$ candidate and a pair of oppositely-charged pion candidates are fitted with a η' mass constraint.

The positron c.m. energy vs the electron c.m. energy

 $m_{\gamma\gamma}$ vs. $m_{\pi+\pi-\eta}$

21

• We require $0.50 < m_{_{YY}} < 0.58 \text{ GeV}/c^2$

The π⁺π⁻η mass spectra for data events. The open histogram is the fit result. The dashed line represents fitted background.

The $Q_{e^-}^2$ vs. $Q_{e^+}^2$ for events with **0.945** < $m_{2\pi\eta}^2$ < **0.972** GeV/ c^2

- New definition: $Q_1^2 = \max(Q_{e^+}^2, Q_{e^-}^2), Q_2^2 = \min(Q_{e^+}^2, Q_{e^-}^2)$
- The average momentum transfers for each region are calculated using the data spectrum normalized to the detection efficiency:

$$\overline{Q_{1,2}^2} = \frac{\sum_i Q_{1,2}^2(i) / \varepsilon(Q_1^2, Q_2^2)}{\sum_i 1 / \varepsilon(Q_1^2, Q_2^2)}.$$

23

• The total number of signal events $N_{\text{signal}}^{\text{fit}} = 46.2^{+8.3}$ -7.0

24

The $\pi^+\pi^-\eta$ mass spectra for data events for the five Q^2 ranges. The open histograms are the fit results. The dashed lines represent background.

Detection efficiency

• The detector acceptance limits the e^-e^+ detection efficiency at small Q^2 . The minimum Q^2 equals to 2 GeV².

• R leads to the decrease of the detection efficiency by ~10 %.

• The maximum energy of the photon emitted from the initial state is restricted by the requirement $E_v < 0.05\sqrt{s}$, where \sqrt{s} is the e⁺e⁻ center-of-mass (c.m.) energy.

Cross section and Form Factor

• The differential cross section for $e^+e^- \rightarrow e^+e^-\eta'$ is calculated as

- $B=B(\eta' \rightarrow \pi^+\pi^-\eta) \times B(\eta \rightarrow 2\gamma) = (0.3941 \pm 0.0020) \times (0.429 \pm 0.007) = 0.169 \pm 0.003$
- $\sigma_{e+e-\rightarrow e+e-\eta'}$ (2 < Q_1^2 , Q_2^2 < 60 GeV²)= (11.4^{+2.8}) fb

$\overline{Q_1^2}, \overline{Q_2^2}, { m GeV}^2$	$arepsilon_{ ext{true}}$	R	N_{events}	$d^2\sigma/(dQ_1^2dQ_2^2)$	$F(\overline{Q_1^2}, \overline{Q_2^2})$
				$\times 10^4$, fb/GeV ⁴	$\times 10^3$, GeV ⁻¹
6.48, 6.48	0.019	1.03	$14.7^{+4.3}_{-3.6}$	$1471.8^{+430.1}_{-362.9}$	$14.32^{+1.95}_{-1.89} \pm 0.83 \pm 0.14$
16.85, 16.85	0.282	1.10	$4.1^{+2.7}_{-2.7}$	$4.2^{+2.8}_{-2.8}$	$5.35^{+1.54}_{-1.54} \pm 0.31 \pm 0.42$
14.83, 4.27	0.145	1.07	$15.8^{+4.8}_{-4.0}$	$39.7^{+12.0}_{-10.2}$	$8.24^{+1.16}_{-1.13} \pm \ 0.48 \pm 0.65$
38.11, 14.95	0.226	1.11	$10.0^{+3.9}_{-3.2}$	$3.0^{+1.2}_{-1.0}$	$6.07^{+1.09}_{-1.07} \pm 0.35 \pm 1.21$
45.63, 45.63	0.293	1.22	$1.6^{+1.8}_{-1.1}$	$0.6\substack{+0.7\\-0.6}$	$8.71^{+3.96}_{-8.71} \pm 0.50 \pm 1.04$
	Ξ				
			St	atistical	Systematic Model

The statistical uncertainty is dominant

Systematic uncertainty. Background subtraction.

• $e^+e^- \rightarrow e^+e^-\eta'\pi^0 \rightarrow e^+e^-\pi^-\pi^+\eta\pi^0$ - kinematically closest background for the process under study. Using the simulation of the $e^+e^- \rightarrow e^+e^-a_0(1450) \rightarrow e^+e^-\eta'\pi^0$ process we estimate the contribution $N_{\eta'\pi^0} < 0.16$ at 90% C.L.

The main source of systematic uncertainty of cross section

Sourco	Uncortainty (%)	\square from previous BaBar study of $\gamma^*\gamma$
π^{\pm} identification		[PRD 84, 052001]
e^{\pm} identification	1.0	
Other selection criteria		
Track reconstruction	0.9	
$\eta \to 2\gamma$ reconstruction	2	
Trigger, filters	1.3	L y
Background subtraction	3.7	
Radiative correction	1.0	
Luminosity	1.0	
Total	12%	

selection	$N_{signal}/\varepsilon_{true}$	deviation from standard criteria
standard selection criteria	985 ± 197	
$P_{e^+e^-\eta'}$ is less than 1 GeV/c instead of 0.35 GeV/c	1052 ± 273	6.8
$10.20 < E_{e^+e^-\eta'} < 10.75 \text{ GeV}$ instead of $10.3 < E_{e^+e^-\eta'} < 10.65 \text{ GeV}$	942 ± 235	-4.3
without the restrictions on E_{e^+} and E_{e^-}	1061 ± 280	7.7
$0.48 < m_{2\gamma} < 0.60 \text{ GeV}/c^2$ instead of	958 ± 181	-2.7
$0.50 < m_{2\gamma} < 0.58 \ \mathrm{GeV}/c^2$		
total		11

 $F_{\eta'}(Q_1^2, Q_2^2) = \frac{F_{\eta'}(0, 0)}{(1 + Q_1^2/\Lambda_P^2)(1 + Q_2^2/\Lambda_P^2)}$ The Λ_p is fixed at 849 MeV/c² from the approximation of $F_{\eta'}(Q^2, 0)$ with one off-shell photon [Phys. Rev. D 85, 057501 (2012)].

The comparison of obtained form-factor with theoretical predictions. Error bars - statistical uncertainties. Shaded rectangles - quadratic sum of the systematic and model uncertainties.

$$F_{\eta'}(Q_1^2, Q_2^2) = \left(\frac{5\sqrt{2}}{9}f_n \sin\phi + \frac{2}{9}f_s \cos\phi\right) \int_0^1 dx \frac{1}{2} \frac{6x(1-x)}{xQ_1^2 + (1-x)Q_2^2} \left(1 + C_F \frac{\alpha_s(\mu^2)}{2\pi} \cdot t(x, Q_1^2, Q_2^2)\right) + (x \to 1-x),$$

- pQCD calculation is in good agreement with data ($\chi^2/n.d.f. = 6.2/5$, Prob = 28%)
- VMD model exhibits a clear disagreement with the experiment.

The most important two-photon processes, realized at the electron-positron low-energy collider

30

A feasibility study for KLOE-(2)

It is promising to use the magnetic dipole decay $\varphi \rightarrow P\gamma$ with following decay chains **P** \rightarrow **l**⁺**l**⁻, **l**⁺**l**⁻**l**⁺**l**⁻, that are sensitive to TFF_P(q₁²>~0,q₂²>~0).

decay	π^0	η	η'
e^+e^-	$(6.46 \pm 0.33) \cdot 10^{-8}$	$< 2.3 \cdot 10^{-6}$	$< 5.6 \cdot 10^{-9}$
$\mu^+\mu^-$	forbidden	$(5.8 \pm 0.8) \cdot 10^{-6}$	no search
$e^+e^-\gamma$	$(1.174\pm0.035)\cdot10^{-2}$	$(6.9 \pm 0.4) \cdot 10^{-3}$	$(4.73 \pm 0.30) \cdot 10^{-4}$
$\mu^+\mu^-\gamma$	forbidden	$(3.1 \pm 0.4) \cdot 10^{-4}$	$(1.09 \pm 0.27) \cdot 10^{-4}$
$e^+e^-e^+e^-$	$(3.34 \pm 0.16) \cdot 10^{-5}$	$(2.40 \pm 0.22) \cdot 10^{-5}$	no search
$\mu^+\mu^-\mu^+\mu^-$	forbidden	$< 3.6 \cdot 10^{-4}$	no search
$e^+e^-\mu^+\mu^-$	forbidden	$< 1.6 \cdot 10^{-4}$ ~2 10	⁷ no search
$\sigma(ee \to P\gamma)_{\sqrt{s}=m_{\phi}} \times 5fb^{-1}$	$26 \cdot 10^6$	$111 \cdot 10^6$	$0.7\cdot 10^6$

Experimental results on the photo leptonic decays of pseudoscalar mesons [PDG].

The last line corresponds to the produced sample of the mesons with integrated luminosity around 5 fb⁻¹.

It is promising to study $e^+e^- \rightarrow e^+e^-P$, that are sensitive to $TFF_p(q_1^2 < 0, q_2^2 < 0)$.

single tagged: 0.4 < $\theta_{e^{\pm}}$ < π - 0.4 rad double tagged: 0.4 < $\theta_{e^{-}}$, $\theta_{e^{+}}$ < π - 0.4 rad

mode\meson	π, pb	η, pb	η', pb
no tagged	284	32	2
single tagged	17	5.2	0.7
double tagged	1.7	0.8	0.2

Large angle scattering is suppresed by factor $1/(k_{tr}^2 + m^2x)$ in each photon flux, but in case of η and η' : $x \sim 0.5$

The calculation is performed by using the EKHARA generator, the answer does not strongly depend on input model for TFF:

H. Czý z, S. Ivashyn, Comput. Phys. Commun**182**, (2011), 1338–1349.

Additionally to previous proposal [D. Babusci et al., EPJ C72, 1917 (2012)] to measure the width $\Gamma_{\pi 0} \rightarrow \gamma \gamma$ and the $\pi^0 \gamma \gamma^*$ form factor F(Q² < 0.1 GeV²) it is interesting to make, for the first time, **double tagged** studies with less statistics.

A feasibility study for KLOE-(2)

Additional plots for $\mathbf{e}^+\mathbf{e}^- \rightarrow \mathbf{e}^+\mathbf{e}^-\mathbf{P} \rightarrow \mathbf{\eta}\mathbf{e}^+\mathbf{e}^- \rightarrow \mathbf{\gamma}\mathbf{\gamma}\mathbf{e}^+\mathbf{e}^-$ at $\mathbf{E}_{c.m.} = 1.02$ GeV with the restriction ($Q^2_{1,2} > 0.03$ GeV²):

The polar angle vs momentum of scattered fermion in c.m.f.

The polar angle vs momentum of photons from the decay $\eta \rightarrow 2\gamma$

The Q_{e}^2 vs Q_{e+}^2 distribution for generated events

GGResRc event generator is used [arXiv:1010.5969]

33

- About 46 events of $e^+e^- \rightarrow e^+e^-\eta'$ were observed in the paper double tagged mode for the first time with BaBar detector.
- The $\gamma^*\gamma^* \rightarrow \eta'$ transition form factor $F(Q_1^2, Q_2^2)$ have been measured for Q^2 range from 2 to 60 GeV².
- The form factor is in reasonable agreement with the pQCD prediction.
- I propose a measurement of this quantity at BELLE II.
- It is promising to perform competitive studies of $\gamma^*\gamma^* \rightarrow P$ with KLOE-(2), however deep efforts to study of background processes are required.

There are alternatives ways:

To open new physics

Try to observe smth. non-expected/violated

To reject models Or

Or

To build new theory, e.g., to describe hadron interactions at low energy

Improve^{1000....}experimental precision

Thank you for your attention

Back up slides

Systematic uncertainty. Background subtraction.

- $e^+e^- \rightarrow e^+e^- J/\psi(\phi) \rightarrow e^+e^-\eta'\gamma$ is negligible according to [**PRD 84**, **052001**].
- $e^+e^- \rightarrow \gamma^* \rightarrow X$:

The cosine of angle between scattered and initial electron (positron) in c.m.f.

The fraction of the events in the bins.

It is reasonable to assume that the $\cos(\alpha_{e^{\pm}})$ spectrums must be symmetric in [-1:1] region for **annihilation processes**, while signal scattered electron (positron) prefers to fly in the about the same direction.

The comparison of the measured η' TFF with $Q_{e+}^2 < Q_{e-}^2$, $Q_{e+}^2 >= Q_{e-}^2$ and without the restriction.

Introduction. $F(Q_1^2, 0)$ at <u>large</u> Q^2 .

19

Pions misedentification with TightKMPionMicroSelection:

The data-MC comparison of $\pi\pi\eta$ invariant mass distribution. The MC histogram is normalized to central bin of data distribution.

The expected number of signal $N_{signal}^{side} = 55 - 18/2 = 46$

The $Q_{e^-}^2$ vs. $Q_{e^+}^2$ for events from control side-band regions

If (d²σ/(dQ²1 dQ²2))_{MC} and ε_{true} is made using VMD TFF:

The comparison of obtained form-factor with theoretical predictions. The Error bars - statistical uncertainties. Shaded rectangles - quadratic sum of the systematic and model uncertainties.

$$\begin{aligned} |\eta' > &= \sin\phi \ |n > +\cos\phi \ |s > & |n > &= \frac{1}{\sqrt{2}}(|\bar{u}u > +|\bar{d}d >) \\ F_{\eta'} &= \sin\phi \ F_n + \cos\phi \ F_s & |s > &= |\bar{s}s > \\ & \lim_{Q^2 \to \infty} F_n(Q^2) = \frac{5\sqrt{2}}{3Q^2} f_n; \lim_{Q^2 \to \infty} F_s(Q^2) = \frac{2}{3Q^2} f_s; & |\eta' > &= \sin\phi |n > +\cos\phi |s > \\ & & \mathbf{Master formula} \\ \bullet \ F_{\eta'}(Q_1^2, Q_2^2) &= (\frac{5\sqrt{2}}{9} \cdot f_n \cdot \sin\phi + \frac{2}{9} \cdot f_s \cdot \cos\phi) \cdot \int_0^1 dx \frac{3x(1-x)}{xQ_1^2 + (1-x)Q_2^2} (1 + C_F \frac{Q^2}{2\pi} \cdot t(x, Q_1^2, Q_2^2)) \\ & + (x \to 1-x) \end{aligned}$$

- at which scale of Q^2 the asymptotic pQCD perdiction starts to be valid?
- In the case of $\gamma\gamma^* \rightarrow P$:

$$F_{\eta'}(Q^2) = F_{\eta'}(Q^2, 0) = \frac{\frac{5\sqrt{2}}{9} \cdot f_n \cdot \sin\phi + \frac{2}{9} \cdot f_s \cdot \cos\phi}{Q^2} \cdot \left(1 - \frac{5}{2}C_F \frac{\alpha_S(Q^2)}{2\pi}\right)$$