Incontri di Fisica Applicata

23-28 May 2010

La Biodola, Isola d'Elba, Italy

Tecniche di analisi con microfasci ionici

Mirko Massi

LABEC, Laboratorio di tecniche nucleari per i beni culturali Dipartimento di Fisica dell'Università di Firenze Sezione INFN di Firenze

http://labec.fi.infn.it massi@fi.infn.it

(3 MV max di terminale, E ioni dell'ordine dei MeV/n)

Sviluppo e applicazione di tecniche per:

analisi di materiali mediante spettrometria di massa (AMS, Accelerator Mass Spectrometry)

analisi di materiali e dispositivi mediante spettroscopia dei prodotti d'interazione fasciobersaglio (tecniche IBA, Ion Beam Analysis)

modificazione di materiali prodotta con l'irraggiamento (IBMM, Ion Beam Modification of Material)

Schema 3MV Tandetron del LABEC

Tecniche di Ion Beam Analysis (IBA)

spectral analysis

radiation detector emission of radiation of characteristic energies (X-rays, γ, particles...)

particle accelerator

hydrogen or helium ion beam (MeV energies)

object to be analysed

Caratteristiche delle tecniche IBA

- multielementalità
- elevata sensibilità (fino a ppm)
- assenza di danno
- misura in esterno

Il fascio esterno

Caratteristiche delle tecniche IBA

- multielementalità
- elevata sensibilità (fino a ppm)
- assenza di danno
- misura in esterno
 - facilità nel maneggiare e muovere il "bersaglio"
 - analisi di oggetti di qualunque dimensione
 - prelievi non necessari
 - riscaldamento trascurabile

Formazione di microfasci

problemi con l'uso di collimatori:

- forte riduzione della corrente
- Formazione di un alone nel fascio
- aumento del fondo dovuto all'interazione fascio-collimatore

per collimazione dimensioni minime dell'ordine del <u>centinaio di μm</u>

Formazione di microfasci in genere quadrupoli magnetici come N Ienti focheggianti il singolo quadrupolo

il singolo quadrupolo converge su un piano e diverge nell'altro

multipletti di quadrupoli convergono su entrambi i piani

S

S

Ν

Doppietto di quadrupoli di Firenze (Oxford Microbeams Ltd)

Microfascio esterno

minima distanza target-finestra e flussaggio di He per minimizzare l'allargamento dovuto allo scattering

risoluzione spaziale <10 μm (protoni da 3 MeV)

Sistema di scansione

controllo della posizione del fascio sulla superficie del bersaglio mediante:

deflessione del fascio sul campione

> traslazione del campione sotto fascio

bobine per la Traslaterilessione micromatricitica micromatricitica remotizzati per il controllo della posizione del target (corsa 25e 9 Mmento riproducibilità 1 μm)

Spettroscopia con "imaging"

Durante la scansione, ogni volta che viene rivelato un "evento" (raggio X, raggio γ...) il software acquisisce:

l'energia E della
 radiazione che
 caratterizza l'elemento
 la posizione (x,y),
 punto di origine della
 radiazione

Dalle terne (E,x,y) si può così ricostruire come sono distribuiti i vari elementi all'interno dell'area scandita

Set up di rivelazione IBA al microfascio esterno del LABEC

PIXE-BS-PIGE-IL detection setup

L'apparato IL al microfascio del LABEC

In collaborazione con la sezione di Torino (esperimento INFN "FARE")

bifurcated optical fiber PMT acq.-scan. linear optical system filter

l'apparato IL è integrato al set up PIXE, PIGE e BS

tutte le tecniche possono essere sfruttate contemporaneamente

Principio della tecnica IL

Si rivela la luminescenza (UV, <u>visibile</u> and IR) indotta dagli ioni in materiali isolanti o semiconduttori

Informazioni sulla struttura cristallina

Informazioni su difetti nel cristallo, presenza di impurezze

Studio PIXE-PIGE-IL sui lapislazzuli In collaborazione con la sezione di Torino (exp. FARE) Caratterizzazione dei lapislazzuli per: Conservazione di opere d'arte l'identificazione della provenienza della pietra usata nell'opera e ricostruzione delle rotte commerciali

Manca studio sistematico e approfondito della pietra grezza, in particolare sulla provenienza

Origine dei lapislazzuli

 Sar-e-Sang, in Afghanistan: la principale sorgente di lapislazzuli per Europa e Asia per più di 6000 anni

Antiche miniere anche in:

- 1. Monti del Pamir (Lyadzhuar Dara, Tajikistan)
- 2. Pakistan (Chagai Hills)
- 3. Siberia (Irkutsk, vicino al lago Baikal)
- 4. Egitto (posizione ignota, monte Sinai?)
- 5. Chile (Flor de los Andes, Coquimbo)

(Miniere moderne anche in Canada, USA, Italy)

Lapislazuli

Minerale principale (che dà il colore): *lazurite* (<u>Na</u>,Ca)₈ (AlSiO₄)₆ (<u>S</u>O₄,S,Cl)₂

minerali accessori più comuni: sodalite Na₈ (AlSiO₄)₆ Cl₂ calcite CaCO₃ pirite FeS₂ diopside CaMgSi₂O₆ wollastonite CaSiO₃ feldspato KAlSi₃O₈

Lazurite e pirite incluse in calcite

Fasi della costruzione del database

- Selezione campioni di rocce di origine certificata: preparazione in sezioni sottili (~50 μm), per separare il contributo dei differenti minerali
- (Museo di Storia Naturale di Firenze)
 II. Studio sistematico con μ-scopia ottica, cold-CL, SEM-EDS-CL, μ-Raman (tecniche più facilmente utilizzabili):
 - individuazione delle fasi e misura spettro CL
 - studio di correlazione con le differenti origini
 - selezione di campioni e aree da analizzare con PIXE-PIGE-IL in base allo studio di correlazione

(Torino)

III. Analisi PIXE-PIGE-IL su campioni e aree selezionate: confronto con i risultati delle altre tecniche ed eventuale individuazione di markers di provenienza (Firenze-Torino)

3 - Ba e Sr possibili *marker* del lapislazzuli siberiano (come proposto in lavori precedenti)

contenuto medio di Bario siberiani: superiore all'1% altra provenienza: minore dell'MDL

contenuto medio di Stronzio

siberiani: nel range delle 1000 ppm altra provenienza: dell'ordine di 100 ppm

4 - Cl nella lazurite del lapislazzuli siberiano <u>non</u> rappresenta un marker (diversamente da come proposto in lavori precedenti)

Analisi IBA dei pezzi della "Collezione Medicea di Pietre Lavorate" (XVI secolo)

(microfascio esterno del LABEC)

Disco con stella

Cofanetto

Vasetto rotondo

Obiettivi:

 deteminare i minerali presenti nella pietra di lapislazzuli utilizzata
 individuare la provenienza del lapislazzuli

Caratteristiche dei lapislazzuli della "Collezione Medicea di Pietre Lavorate"

campione	minerali accessori individuati
disco	lazurite, feldspato, pirite, diopside, flogopite
cofanetto	lazurite, pirite, diopside, flogopite
vasetto	lazurite, diopside, pirite, flogopite, inclusioni di Fe

- non rivelata wollastonite \rightarrow *esclusa origine cilena*
- non rivelata banda a 690 nm con IL
 → non dovrebbe provenire dal Pamir
 - basse concentrazioni di Ba e Sr
 → non dovrebbe provenire dalla Siberia
 - Probabilmente il lapislazzuli è afghano, ma non si può escludere l'origine pakistana il lavoro prosegue...

Geo-termometro all'Y nel granato

Iegame tra temperatura di formazione della roccia e concentrazione degli elementi nei minerali inclusi (geotermometro)

nei minerali "zonati" si possono avere informazioni sulle differenti fasi di crescita

si guardano le tracce perchè i maggiori diffondono e si redistribuiscono

Misura di concentrazione dell'ittrio all'interno del granato, (Fe,Mg,Ca,Mn)₃Al₂Si₃O₈

Misura μ-PIXE su campioni provenienti dall'arco calabro-peloritano

Profilo di concentrazione dell'Y

Profilo di temperatura applicando il geotermometro

le misure mostrano cambiamenti nella temperatura tra i 450° e i 650° durante la crescita del cristallo

Analisi μ-PIXE dell'accumulo
di metalli pesanti nelle formicheUtile per capire quali effetti questi inquinanti
ambientali possono avere sugli organismi viventi

La specie crematogaster scutellaris è risultata, da studi preliminari, un buon accumulatore di metalli pesanti (concentrazioni intorno alla decina di ppm)

Accumulo di Fe nei corpi grassi
 Accumulo di Cu e Zn nelle pareti dello stomaco
 Accumulo di Sr e Ca nei tubuli

malpighiani

Sistema di rivelazione di particelle in avanti (exp. FARE)

In 10 minuti si passa da 10^{10} p/s (~nA) a 10^{2} p/s , per STIM o caratterizzazione rivelatori

STIM in esterno su sezione di formica

beam

.

target

particle

detector

-

Modificazione dell'indice di rifrazione del diamante

> Per la realizzazione di guide d'onda a contrasto di *n* (microdispositivi fotonici)

Gli ioni di energie di alcuni MeV rappresentano uno strumento ideale per la modificazione controllata delle proprietà fisiche del diamante

Il primo passo è trovare come la variazione dell'indice di rifrazione dipende dalla fluenza (ioni/cm²) impiantata

Misura della carica "on-beam"

La forma del "nasino" di uscita consente di rivelare i raggi X del Si prodotti sulla finestra di Si₃N₄ al passaggio del fascio

Campioni di diamante sintetico a singolo cristallo impiantati con protoni di 2 e 3 MeV su aree di circa 125 µm x 125 µm (range di fluenze 10¹⁵- 10^{17} p/cm^2)

Immagine ottica

Caratterizzazione ottica per la misura della variazione di cammino ottico e dell'assorbimento

Risultati delle misure ottiche di variazione di cammino ottico e di lunghezza di assorbimento (λ =632.8 nm)

Deconvoluzione di OPD e AL con il profilo di danneggiamento simulato

Acknowledgements

- Lorenzo Giuntini, Silvia Calusi, Nicla Gelli
- Gruppo del LABEC
- Officina meccanica del dipartimento di fisica di Firenze
- <u>Servizio di elettronica dell'INFN di</u>
 <u>Firenze</u>