

Nuclear Physics applied to the production of

Innovative Radio-Pharmaceuticals

Part II: tutorial on the ⁵²Mn case

Andrea Fontana/Luciano Canton

INFN Sezione di Pavia/Sezione di Padova

Pisa, 22 Luglio 2019

Contents

- Motivation for the production of ⁵²Mn
- Cross section for the reaction ⁵²Cr(p,n)⁵²Mn Cross section from Talys
- From the cross section to the yield Reaction rate How to optimize the yield? Excel exercise
- Discussion of results
 Yield calculation with Talys
 Comparison with literature

Why ⁵²Mn?

It is always very challenging to find out a chemical compound that can behave at the same time as:

- a contrast agent showing paramagnetic properties;
- having some radioactive isotopes with useful nuclear properties for PET imaging like ¹⁸F.

The **only radionuclide** with 1 < Z < 92 having main positron emitting nuclear properties basically mimic 18 F (i.e. average energy β^+ 250 keV and similar β^+ spectrum energy range) is 52 Mn only, that could be employed as PET tracer. 51 Mn is an alternative radionuclide PET candidate, although with a higher energy β^+ spectrum.

PET and MRI fusion

A breakthrough in **Multi-Modal Imaging** (MMI) diagnostic procedures may be achieved with a genuine fusion between PET/SPECT and MRI analyses. However that could be obtained only by using both a radioactive and contrast agent based upon the same chemical compound.

With the recent achievements in PET/MRI scanner technology, the use of radio-manganese, a manganese compound (i.e. a mixture of 52g Mn and 51 Mn), may enable future dual modal imaging techniques, having both properties for MRI and PET.

Feasibility study: INFN project METRICS (CSN5).

⁵²Mn decay scheme

⁵²Mn has a metastable state:

(IT=Isomeric Transition; EC=Electronic Capture)

It is possible to produce 52 Mn from Chromium with the reaction 52 Cr(p,n) 52 Mn.

Cross section for the reaction ⁵²Cr(p,n)⁵²Mn

⁵²Mn is produced mainly at low energy via the **compound nucleus** mechanism:

In the following we only focus on the ground state.

⁵²Mn contaminants

All the Mn isotopes: **contaminants** are also produced by the same reaction.

Isotope	half-life
⁴⁸ Mn	158 ms
$^{49}{ m Mn}$	382 ms
^{50g} Mn	283 ms
^{50m} Mn	1.75 min
$^{51}{\sf Mn}$	46 min
^{52g} Mn	5.6 d
^{52m} Mn	21.1 min
⁵³ Mn	3.7x10 ⁶ y
$^{54}{ m Mn}$	312 d
$^{55}{ m Mn}$	stable

Looking at half-lives, the most dangerous is 53 Mn... but with a little cross section.

Reaction rate

Let us consider a production experiment for a given radio-isotope as $^{52}\mathrm{Mn}$:

$$N_{b}$$
 Target Specifies
$$N_{b}$$
 Detector area
$$(S^{a}=f^{*}G\Omega)$$
 Beam area A Target area A_{c}

We want to evaluate the number of secondary nuclei generated in the target under specific irradiation conditions (beam current, irradiation time, target thickness...)., i.e. in our case the amount of ⁵²Mn that is produced.

It is calculated starting from the **reaction rate**, i.e. to the number of nuclei produced per second:

$$R = \frac{I_0}{\mathsf{z}_{proj}|e|} \frac{N_a}{A} \int_{E_{out}}^{E_{in}} \sigma(E) \left(\frac{1}{\rho_t} \frac{dE}{dx}\right)^{-1} dE \qquad [nuclei/s]$$

where I_0 is the charge beam current (measured in ampere), z_{proj} the atomic number of the incident particle, e the electron charge, N_a the Avogadro number, A the target atomic mass, E_{in} and E_{out} the energy of the projectile impinging on the target and after exiting from the target respectively, $\sigma(E)$ the production cross section of the nuclide analysed, ρ_t the target density and $\frac{dE}{dx}$ the stopping power of the projectile in the target.

Stopping power

The incident proton loses energy and slows down inside the target: the energy loss is given by the so called **stopping power**:

$$S(E) = -\frac{1}{\rho_t} \frac{dE}{dx}$$
 [MeV cm²/g]

Bethe-Bloch formula:

$$\begin{array}{lcl} \frac{1}{\rho_{t}}\frac{dE}{dx} & = & 2\pi N_{a}r_{e}^{2}m_{e}c^{2}\frac{Z}{A}\frac{z^{2}}{\beta^{2}}\left[\log\left(\frac{2m_{e}\gamma^{2}v^{2}W_{max}}{I^{2}}\right)-2\beta^{2}\right]\\ W_{max} & \simeq & 2m_{e}c^{2}\beta^{2}\gamma^{2} \end{array}$$

Thick Target yield

The yield is defined as the number of produced nuclei per incoming charged particle and is measured in [nuclei/C] or in [MBq/ μ A]. Typically:

$$Y(E) = n \frac{\int_0^E \sigma(E) dE}{\frac{dE}{dx}}$$

with n=target density.

Two cases:

• thin target yield: very little energy loss, with $\sigma_i \sim$ const and $S_i(E) \sim$ const in each layer Δx_i

$$Y_i \approx n\sigma \Delta x_i$$

• thick target yield (TTY): we integrate over many layers, by taking into account the stopping power...

$$Y \approx n \sum_{i} \sigma_{i} \frac{\Delta x_{i}}{\Delta E_{i}} \Delta E_{i}$$

Care is required since many different definitions of yield are present in the literature.

In this exercise we are interested in the **final activity of** ^{52}Mn produced, which is obtained by evaluating the number of nuclei N(t) produced during a given irradiation. If the product is stable:

$$N(t) = Rt$$

Time evolution

If the product is radioactive with decay constant λ (for 52 Mn: $\lambda=1.435\times 10^{-6} s^{-1}$), the number of the produced nuclei present in the sample N(t) satisfies

$$\frac{dN(t)}{dt} = R - \lambda N(t)$$

with t = 0 as time of beginning of the irradiation. The solution is:

$$N(t) = R \frac{1 - e^{-\lambda t}}{\lambda}$$

The activity is given by:

$$A(t) = \lambda N(t) = R(1 - e^{-\lambda t})$$

We can define:

- End Of Bombardment (EOB) activity immediately after the irradiation;
- **Saturation** activity for $\lambda t >> 1$: $A(t) \rightarrow R$.

How to optimize yield?

This is true for all the produced isotopes, both $^{52}\mathrm{Mn}$ all all the other Mn.

Aim: to maximize the yield of the desired isotope and to minimize the contaminants.

- increase the current
- increase the irradiation time
- increase the target quantity (thickness, enrichment)
- carefully select the nuclear reaction and the projectile energy

Not an easy task!

Important parameters to look at:

- reactions thresholds
- cross sections ratio
- Isotopic Purity: $\mathit{IP} = \frac{\mathit{N}_{52} \mathsf{Mn}}{\mathit{N}_{\mathsf{all}} \mathsf{Mn}}$
- Radionuclidic Purity: $RNP = \frac{A_{52}Mn}{A_{all}Mn}$

Cross section ratio

In our case, we can identify a **low energy window** where only $^{52}\mathrm{Mn}$ is produced without any contaminant.

The Excel exercise

The problem

Evaluate the $^{52}\mathrm{Mn}$ EOB activity produced with the following irradiation profile:

• current: 300 μ A • irradiation time: 1 h

• *E_{in}*: 14 Mev, *E_{out}*: 12 MeV

ullet target thickness: \sim 100 μ m

Four steps:

- cross-section readout and plot;
- stopping power evaluation
- yield integral evaluation: rate and EOB activity
- saturation activity

Step 1: cross section

Step 2: stopping power

Step 3: rate and EOB activity

Step 4: saturation activity

Calculation details

• mean ionization potential for Bethe-Bloch formula:

$$rac{I}{Z} = 9.76 + 58.8 \, Z^{-1.19} \, \mathrm{eV} \, \mathrm{for} \, \mathrm{Z} \geq 13$$

linear interpolation formula:

$$y = y_0 + (x - x_0) \frac{y_1 - y_0}{x_1 - x_0}$$

• trapezoidal rule integration:

$$\int_{a}^{b} f(x)dx \approx \frac{\Delta x}{2} \sum_{i=1}^{N} (f(x_{k-1}) + f(x_{k}))$$

Discussion of the result

The calculation shows that at EOB we produce about **1.1 GBq of** 52g **Mn**.

For comparison, a typical injected dose of $^{18}\textit{FDG}$ for a PET diagnosis corresponds to $\sim 370~\mathrm{MBq}.$

Calculation with Talys

Talys can evaluate the cross section (left), but also perform irradiation calculations (right):

projectile p element Cr mass 52 energy 1 100 1 projectile p element Cr mass 52 energy 1 100 1 production y Ebeam 14. Eback 12. Ibeam 0.3 Area 1. rho 7.19 Tirrad 1 h Tcool 0. s

Talys results

Talys irradiation results:

```
# Reaction: p + 52Cr Production of 52Mn Ground state
# Beam current:
                    0.30000 mA Energy range: 14.000 -->
                                                            12.000 MeV
                                      0 days 1 hours 0 minutes 0 seconds
# Irradiation time
                             0 vears
# Cooling time
                             0 vears
                                      0 days 0 hours 0 minutes 0 seconds
# Half life
                             0 years
                                      5 days 14 hours 16 minutes 48 seconds
# Maximum production at:
                         0 years 59 days 6 hours 16 minutes 25 seconds
# Initial production rate: 2.24547E-10 [s^-1] Decay rate: 1.43388E-06 [s^-1]
# # time points =100
# Time [h] Activity [GBq] #isotopes [
                                      ] Yield [GBq/mAh]
                                                           Isotopic frac.
     0.1
           1.10656E-01
                          7.71728E+13
                                         3.68854E+00
                                                            0.26301
     0 2
           2.21255E-01
                         1.54306E+14
                                         3.68663E+00
                                                            0.26301
    0.3
           3.31797E-01
                          2.31399F+14
                                         3.68473F+00
                                                            0.26301
     0 4
           4.42282E-01
                          3 08452F+14
                                         3 68283F+00
                                                            0.26301
    05
           5.52710E-01
                          3.85465E+14
                                         3 68092F+00
                                                            0.26301
    0.6
           6.63081F-01
                          4.62439F+14
                                         3.67903F+00
                                                            0.26301
           7.73394F-01
                          5.39373F+14
                                         3.67713F+00
                                                            0.26301
     0.7
     0 8
           8.83651E-01
                          6.16267E+14
                                         3.67523E+00
                                                            0.26301
    0.9
           9.93851E-01
                          6.93122F+14
                                         3.67333F+00
                                                            0.26301
    1.0
           1.10399E+00
                          7.69937F+14
                                         3.67143F+00
                                                            0.26301
    1 1
           1.10342E+00
                          7 69539F+14
                                         a aaaaaF+aa
                                                            0 26301
```

Other tools

Radioisotope Yield Calculator (RYC) (developed at ARRONAX) https://www.arronax-nantes.fr/outil-telechargement/outils-radionuclide-yield-calculator/

Grazie per l'attenzione!

References

- A. Otuka and S. Takács, Definitions of radioisotope thick target yields, Radiochim. Acta 2015; 103(1): 1-6
- S. Takács et al., Validation and upgrading of the recommended cross section data of charged particle reactions used for production of PET radioisotopes, NIM B 211 (2003) 169
- C. Iliadis, Nuclear Physics of Stars, Wiley 2015
- W. R. Leo, Techniques for nuclear and particle physics experiments, Springer 1994

Contact

luciano.canton@pd.infn.it http://active.pd.infn.it/g4/index.html

andrea.fontana@pv.infn.it http://www.pv.infn.it/~fontana