
THE O2 PROJECT
Giulio Eulisse (CERN)

ALICE IN RUN 2
From O(1) kHz single events...

p - p p - Pb Pb - Pb
�2

...to 50kHz of continuous readout data.

Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb
Timeframe of 2 ms shown (will be 10 – 20 ms in production)

Tracks of different collisions shown in different colour

ALICE IN RUN 3

CHALLENGES FOR ALICE IN RUN 3
➤ Reconstruct 50x more events online (minbias events only).

➤ Store 50x more events (needs TPC compression factor 20x compared to Run 2 raw data size)

➤ Reconstruct TPC data in continuous readout in combination with data coming from triggered
detectors.

➤ All of the above while deploying a completely new detector readout and while performing
substantial upgrades to the detector itself (new ITS, new GEM for TPC readout, ...).

➤ All of the above in a "flat budget" scenario...

DESIGNING A NEW COMPUTING ARCHITECTURE FOR ALICE IN RUN 3: ALICE O2
ALICE can cope with the challenges of Run 3 only by a radical redesign of its software
and computing architecture.

➤ New architecture based on the experience accumulated in the ALICE HLT during Run 1 / Run 2.

➤ Focus on online data compression, only keeping raw data and AOD objects, trading computational
cost for storage.

➤ Simplified Data Model in order to improve I/O performance.

➤ Appropriately chosen algorithms providing higher throughput for negligible loss of physics
performance. Algorithms tuned for vectorisation / exploitation of hardware accelerators (GPUs).

➤ Ability to port software components in a gradual manner.

➤ Close collaboration with the physics community in order to organise analysis efforts.

➤ Close collaboration with GSI and FAIR experiments on a common software stack (ALFA).

ALICE IN RUN 3: POINT 2

FLP

FLP

EPN

FLP

De
te

ct
or

EPN

EPN

≳3TB/s  
(~45GB/s in Run 2)

up to 500GB/s

...

Readout

Synchronous  
reconstruction  

(data reduction)

On-site  
storage

EPN / Grid

...

Asynchronous  
reconstruction  

(improved conditions)

EPN / Grid

EPN / Grid Permanent 
storage

�6

up to 100GB/s  
(~10GB/s in Run 2)

EPN input data quantum is the
"timeframe": 23ms of continuous

readout data. ~10GB

EPNEPNEPNEPN

BEAM ON: data reduction BEAM OFF: improved calibration

~60PB  
(1PB in Run 2)

O(200) nodes

O(1000) nodes  
with 2xGPUs  

per node

TIMEFRAME

Data quantum will not be the event, but the "Timeframe".

➤ ~23ms worth of data taking in continuous readout. Equivalent to 1000 collisions. Atomic unit.

➤ ~10GB after timeframe building. Vast majority in TPC clusters.

➤ Compressed to ~2GB after asynchronous reconstruction, thanks to track-model-compression,
storing clusters instead of ADC values, tailored fixed point integer format, logarithmic precision,
entropy encoding.

➤ 50x the number of collisions of Run 2.

➤ All MinBias. We need to (lossly) compress information, not filter it.

�7

SYNCHRONOUS RECONSTRUCTION: GPUS AS FIRST CLASS CITIZENS

Synchronous processing will actually be possible thanks to GPU utilisation for TPC tracking. One modern GPU replaces
40 CPU cores. Changing the algorithm gives an additional 20x - 25x speedup with comparable quality.

David Rohr  
@CHEP 2018

�8

ASYNCHRONOUS RECONSTRUCTION

➤ Follows the Data Taking period

➤ 2 processing cycles per data taking year, with increasingly sophisticated calibration
and improved reconstruction software.

➤ Single persistent analysis object output - Analysis Object Data

➤ Processing on O2 Facility + T0 (70% of CTF volume), T1 (30% of CTF volume).

➤ After 2nd cycle CTF will remain only on tape (removed from the disk buffer) and
any subsequent cycle will have to wait until LHC LS.

ALICE IN RUN 3: POINT 2

FLP

FLP

EPN

FLP

De
te

ct
or

EPN

EPN

≳3TB/s  
(~45GB/s in Run 2)

up to 500GB/s

...

Readout

Synchronous  
reconstruction  

(data reduction)

On-site  
storage

EPN / Grid

...

Asynchronous  
reconstruction  

(improved conditions)

EPN / Grid

EPN / Grid Permanent 
storage

�10

up to 100GB/s  
(~10GB/s in Run 2)

EPN input data quantum is the
"timeframe": 23ms of continuous

readout data. ~10GB

EPNEPNEPNEPN

BEAM ON: data reduction BEAM OFF: improved calibration

~60PB  
(1PB in Run 2)

O(200) nodes

O(1000) nodes  
with 2xGPUs  

per node

epn0...M
flp1...N

flp0

TRANSPORT LEVEL SYSTEM ARCHITECTURE

Shared Memory

Ne
tw

or
k

ba
se

d
M

es
sa

ge
 P

as
si

ng

Shared Memory

HW
Readout
Module

SubTimeframe
building device

EPN
Receiver

Pre -
clusterization

Local
reconstruction

Reconstruction
step 1

Reconstruction
step 2

�11

ALICE O2: SOFTWARE FRAMEWORK IN ONE SLIDE

�12

Transport Layer: ALFA / FairMQ1
➤ Standalone processes for deployment flexibility.
➤ Message passing as a parallelism paradigm.
➤ Shared memory backend for reduced memory usage and improved performance.

➤ Separation of Concerns: From the architectural point of view, it allows ALICE to factor out
data transport from the system description.

➤ Performant transport: collaboration with FAIR experiments and GSI allows sharing of
highly skilled engineers to work on the performance critical parts related to transport.

WHY FAIRMQ?

HW
Readout
Module

SubTimeframe
building device

flp0

flp1...N

Pre - clusterization

Local reconstruction

EPN Receiver Reconstruction
step 1

Reconstruction
step 2

epn0..M

�13

ALICE O2: SOFTWARE FRAMEWORK IN ONE SLIDE

Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends:
➤ Simplified, zero-copy format optimised for performance and direct GPU usage. Useful e.g. for

TPC reconstruction on the GPU.
➤ ROOT based serialisation. Useful for QA and final results.
➤ Apache Arrow based. Useful as backend of the analysis ntuples and for integration with other

tools.

�14

Transport Layer: ALFA / FairMQ1
➤ Standalone processes for deployment flexibility.
➤ Message passing as a parallelism paradigm.
➤ Shared memory backend for reduced memory usage and improved performance.

O2 DATA MODEL

A timeframe is a collection of (header, payload) pairs. Headers defines the type of data. Different
header types can be stacked to store extra metadata (mimicking a Type hierarchy structure). Both
header and payloads should be usable in a message passing environment.

Different payloads might have different serialisation strategies. E.g.:

➤ TPC clusters / tracks: flat POD data with relative indexes, well suitable for GPU processing.

➤ QA histograms: serialised ROOT histograms.

➤ AOD: some columnar data format. Multiple solutions being investigated.

DataHeader Payload1 DataHeader Payload2
Custom
header ... ()IndexDataHeader

�15

Reconstruction Step 2PAYLOAD

HEADER

ORIGIN
DESCRIPTION

SUBSPECIFICATION
TIMESTAMP

...
HEADER

HEADER

PAYLOAD

Messages being exchanged in O2 have a (header,
payload) structure where the header describes
the contents of the subsequent payload.

➤ Origin represents the Detector or Component
that first created the message (e.g. TPC)

➤ Description is the data type of the payload
(e.g. CLUSTERS),

➤ Subspecification can be used to encode extra
information (e.g. TPC sectors)

➤ Timestamp / Timerange indicates the
Timeframe it belongs to.

Reconstruction Step 1

�16

O2 DATA MODEL

ALICE O2: SOFTWARE FRAMEWORK IN ONE SLIDE

Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends:
➤ Simplified, zero-copy format optimised for performance and direct GPU usage. Useful e.g. for

TPC reconstruction on the GPU.
➤ ROOT based serialisation. Useful for QA and final results.
➤ Apache Arrow based. Useful as backend of the analysis ntuples and for integration with other

tools.

�17

Transport Layer: ALFA / FairMQ1
➤ Standalone processes for deployment flexibility.
➤ Message passing as a parallelism paradigm.
➤ Shared memory backend for reduced memory usage and improved performance.

DISTRIBUTED SYSTEMS ARE HARD

There are only two hard problems in distributed systems:

2. Exactly-once delivery 
1. Guaranteed order of messages 
2. Exactly-once delivery

�18

TPC
tracking

DISTRIBUTED SYSTEMS ARE HARD

There are only two hard problems in distributed systems:

2. Exactly-once delivery 
1. Guaranteed order of messages 
2. Exactly-once delivery

Since too many people did not get the joke, we started thinking how to simplify this for the user, as a
result we decided to build a data flow engine (pipelines!) on top of our distributed system backend.

Network
Source

TPC
tracking

File 
sink

�19

ITS
tracking

MCH  
c.c.

TPC/ITS
matching

ALICE O2: SOFTWARE FRAMEWORK IN ONE SLIDE

Transport Layer: ALFA / FairMQ1
➤ Standalone processes for deployment flexibility.
➤ Message passing as a parallelism paradigm.
➤ Shared memory backend for reduced memory usage and improved performance.

Data Processing Layer (DPL)

Abstracts away the hiccups of a distributed system, presenting the user a familiar "Data
Flow" system.
➤ Reactive-like design (push data, don't pull)
➤ Declarative Domain Specific Language for topology configuration (C++17 based).
➤ Integration with the rest of the production system, e.g. Monitoring, Logging, Control.
➤ Laptop mode, including graphical debugging tools.

�20

Data Layer: O2 Data Model

Message passing aware data model. Support for multiple backends:
➤ Simplified, zero-copy format optimised for performance and direct GPU usage. Useful e.g. for

TPC reconstruction on the GPU.
➤ ROOT based serialisation. Useful for QA and final results.
➤ Apache Arrow based. Useful as backend of the analysis ntuples and for integration with with

other tools.

DPL: IMPLICIT WORKFLOW DEFINITION

HW
Readout
Module

SubTimeframe
building device

flp0

flp1...N

Pre -
clusterization

Local
reconstruction

EPN Receiver Reconstruction step 1 Reconstruction step 2

epn0..M

�21

Pre - clusterization Local reconstruction Reconstruction step 1
TracksUnfiltered digits

Filtered digits
Clusters

Reconstruction step 2

DPL

DPL converts a physics oriented
implicit description of the workflow

to an explicit FairMQ topology.

Noisy channel mask

CCDB

DPL Workflow 1 DPL Workflow 2

FairMQ topology

DPL: BUILDING BLOCK

A DataProcessorSpec defines a pipeline
stage as a building block.

➤ Specifies inputs and outputs in terms of
the O2 Data Model descriptors.

➤ Provide an implementation of how to act on
the inputs to produce the output.

➤ Advanced user can express possible data or
time parallelism opportunities.

a b

AlgorithmSpec

DataProcessorSpec

InputSpec OutputSpec

�22

DATA PROCESSING LAYER: IMPLICIT TOPOLOGY

B

C

B D
E

D

C E

Data Processing Layer

Topology is defined implicitly.
Topological sort ensures a viable dataflow is constructed (no cycles!).
Laptop users gets immediate feedback through the debug GUI.
Service API allows integration with non data flow components (e.g. Control)

�23

�24

Debug GUI

�25

4 FairMQ devices  
exchanging messages in a

diamond topology

�26

GUI shows state of the various
message queues in realtime.

Different colors mean different
state of data processing.

Clicking on a node provides the log

�27

An embedded metrics viewer provides in GUI
feedback on DPL & user defined metrics.

Multiple backends supported, including of course
InfluxDB (i.e. for ALICE data taking) and Monalisa

(Grid deployments).
See "Towards the integrated ALICE Online-Offline
(O2) monitoring subsystem", by Adam Wegrzynek

�28

 1 #include "Framework/runDataProcessing.h"
 2
 3 using namespace o2::framework;
 4
 5 AlgorithmSpec simplePipe(std::string const &what) {
 6 return AlgorithmSpec{ [what](ProcessingContext& ctx) {
 7 auto bData = ctx.outputs().make<int>(OutputRef{what}, 1);
 8 } };
 9 }
 10
 11 WorkflowSpec defineDataProcessing(ConfigContext const&specs) {
 12 return WorkflowSpec{
 13 { "A", Inputs{}, {OutputSpec{{"a1"}, "TST", "A1"}, OutputSpec{{"a2"}, "TST", "A2"}},
 14 AlgorithmSpec{
 15 [](ProcessingContext &ctx) {
 16 auto aData = ctx.outputs().make<int>(OutputRef{ "a1" }, 1);
 17 auto bData = ctx.outputs().make<int>(OutputRef{ "a2" }, 1);
 18 }
 19 }
 20 },
 21 { "B", {InputSpec{"x", "TST", "A1"}}, {OutputSpec{{"b1"}, "TST", "B1"}}, simplePipe("b1")},
 22 { "C", {InputSpec{"x", "TST", "A2"}}, {OutputSpec{{"c1"}, "TST", "C1"}}, simplePipe("c1")},
 23 { "D", {InputSpec{"b", "TST", "B1"}, InputSpec{"c", "TST", "C1"}}, Outputs{},
 24 AlgorithmSpec{[](ProcessingContext &ctx) {}}
 25 }
 26 };
 27 }

The previous example (GUI
included) requires  
27 user's SLOC.

�29

B

C

B D
E

D

C E

Compiles into a
single executable

for the laptop user.

<topology id="o2-dataflow">
 <decltask id="A">
 <exe reachable="true">../bin/o2DiamondWorkflow --id A ...</exe>
 </decltask>
 <decltask id="B">
 <exe reachable="true">../bin/o2DiamondWorkflow --id B ...</exe>
 </decltask>
 <decltask id="C">
 <exe reachable="true">../bin/o2DiamondWorkflow --id C ...</exe>
 </decltask>
 <decltask id="D">
 <exe reachable="true">../bin/o2DiamondWorkflow --id D ...</exe>
 </decltask>
</topology>

Generates DDS
configuration

for deployment
on a farm.

Integration with O2 Control system.

�30

Support for multiple
deployment
strategies.

ANALYSIS MODEL: RUN 2
In order to offset the costs of reading data, ALICE has as strong tradition of organised
analysis (i.e. trains):

➤ Users provide "wagons", organised in "trains". Trains run on the Grid.

➤ Data is read only once per train, wagons get applied to it.

➤ Data is kept in a generic C++ object store, backed by ROOT, as you know.

➤ Slow sites / site issues is what dominates performance.

ESD /
AOD

�31

RESOURCE SHARE PROJECTION

Reconstruction
14%

MC
72%

Analysis
14%

Calibration
1%

Asynchronous
35%

Synchronous Reco
5% MC

25%

Analysis
34%

Today Run 3+

O2 COMPUTING MODEL IN ONE SLIDE

ANALYSIS MODEL: RUN 3
Solid foundations: the idea of organised analysis will remain. Improve on the implementation.

➤ x100 more collisions compared to present setup

➤ Do initial analysis on a fraction of the data on fewer, highly performant, Analysis Facilities.

➤ Full analysis on a reduced set of wagons on the Grid => Prioritise processing according to physics needs.

➤ Streamline data model, reducing generality and features set to improved speed.

➤ Explore different compression strategies (e.g. LZ4, Zstd, custom compression code)

➤ Recompute quantities on the fly rather than storing them. CPU cycles are cheap.

➤ Goal is to have each Analysis Facility go through 5PB of AODs every 12 hours (~100GB/s).

AOD

�34

REQUIREMENTS FOR THE AOD FORMAT

AOD's data format will have to play well with AliceO2 message passing, shared
memory backed, distributed nature.

➤ Zero-{Copy,Serialisation,Adjustments}: we want to be able to reuse data between
processes.

➤ Growable: ability to extend columns on the fly.

➤ Prunable: ability to drop columns on the fly.

➤ Skimmable: ability to select only certain rows.

Strategy: we are willing to lose some degree of generality for performance.

�35

APACHE ARROW: A POSSIBLE SOLUTION FOR IN-MEMORY COLUMNAR FORMAT

"Cross-language development platform for in-memory columnar data."

Well established. Top-Level Apache project backed by key developers of a number of opensource projects: Calcite,
Cassandra, Drill, Hadoop, HBase, Ibis, Impala, Kudu, Pandas, Parquet, Phoenix, Spark, and Storm.

Very active. 119 contributors, https://github.com/apache/arrow
O2 design friendly. message passing / shared memory friendly. Support for zero-copy slicing, filtering.

�36

https://github.com/apache/arrow

APACHE ARROW: A FEW TECHNICAL DETAILS

In memory column oriented storage. Full description https://arrow.apache.org/docs/
memory_layout.html. Data is organized in Tables. Tables are made of Columns. Columns are
(<metadata>, Array). An Array is backed by one or multiple Buffers.

Nullable fields. An extra bitmap can optionally be provided to tell if a given slot in a column is
occupied.

Nested types. Usual basic types (int, float, ..). It’s also possible (via the usual record shredding
presented in Google’s Dremel paper) to support nested types. E.g. a String is a List<Char>.

No (generic) polymorphism. The type in an array can be nested, but there is no polymorphisms
available (can be faked via nullable fields & unions).

Suitable for ALICE analysis needs?

�37

The main concern here is of course "how do I use this from ROOT"?

APACHE ARROW: INTEGRATION WITH ROOT

RDataFrame: new component of ROOT for "declarative analysis". Modular design allows

Initial integration of Arrow with ROOT has already been provided by ALICE and merged by the ROOT
team.

Bonus: ROOT gets seamless integration with many OpenSource projects which you can mention to impress your friends and
that make your CV look good to head-hunters.

RDataFrame

�38

WP12 / Simulation

WP8 /
Monitoring

Digitization

DataSamplingWP7 / Quality Control TPC reconstruction WP13 / Reconstruction

O2 Monitoring and InfoLogger integration

DPL AS AN INTEGRATION PLATFORM FOR O2

O2 AliECS
WP8 / Control

MID Filtering Chain

!39

TPC Event Displays

fPhi
Entries 497507
Mean 3.133
Std Dev 1.812

1− 0 1 2 3 4 5 6 7 8
phi

0

2000

4000

6000

8000

10000

12000
fPhi

Entries 497507
Mean 3.133
Std Dev 1.812

phi

WP14 / Analysis

BACKUP

DATA PROCESSING LAYER: HOW

�41

InputSpec OutputSpec

a b

AlgorithmSpec

DataProcessorSpec

DataProcessorSpec{
 "A",
 Inputs{
 InputSpec{"a", "TPC", "CLUSTERS"}
 },
 Outputs{
 OutputSpec{{"b"}, "TPC", "TRACKS"}
 },
 AlgorithmSpec{
 [](ProcessingContext &ctx) {
 auto track = ctx.outputs().make<Track>(OutputRef{ "b" }, 1);
 }
 }
}

DATA PROCESSING LAYER: HOW

�42

InputSpec OutputSpec

a b

AlgorithmSpec

DataProcessorSpec

DataProcessorSpec{
 "A",
 Inputs{
 InputSpec{"a", "TPC", "CLUSTERS"}
 },
 Outputs{
 OutputSpec{{"b"}, "TPC", "TRACKS"}
 },
 AlgorithmSpec{
 [](ProcessingContext &ctx) {
 auto track = ctx.outputs().make<Track>(OutputRef{ "b" }, 1);
 }
 }
}

DATA PROCESSING LAYER: HOW

�43

InputSpec OutputSpec

a b

AlgorithmSpec

DataProcessorSpec

DataProcessorSpec{
 "A",
 Inputs{
 InputSpec{"a", "TPC", "CLUSTERS"}
 },
 Outputs{
 OutputSpec{{"b"}, "TPC", "TRACKS"}
 },
 AlgorithmSpec{
 [](ProcessingContext &ctx) {
 auto track = ctx.outputs().make<Track>(OutputRef{ "b" }, 1);
 }
 }
}

DATA PROCESSING LAYER: HOW

�44

InputSpec OutputSpec

a b

AlgorithmSpec

DataProcessorSpec

DataProcessorSpec{
 "A",
 Inputs{
 InputSpec{"a", "TPC", "CLUSTERS"}
 },
 Outputs{
 OutputSpec{{"b"}, "TPC", "TRACKS"}
 },
 AlgorithmSpec{
 [](ProcessingContext &ctx) {
 auto track = ctx.outputs().make<Track>(OutputRef{ "b" }, 1);
 }
 }
}

REACTIVE DESIGN
Data is described as pushed through the pipeline.

Algorithm

Conditions

t0 t1 t2 t3 t4t5Timeframe Input B

Result t0 t1 t2 t3 t5

t

t0 t1 t2 t3 t4 t5Timeframe Input A

�45

REACTIVE DESIGN

Algorithm

Conditions

t0 t1 t2 t3 t4t5Timeframe Input B

Result t0 t1 t2 t3 t5

t

t0 t1 t2 t3 t4 t5Timeframe Input A

Algorithm is dispatched
when all the inputs are ready

�46

REACTIVE DESIGN

Algorithm

Conditions

t0 t1 t2 t3 t4t5Timeframe Input B

Result t0 t1 t2 t3 t5

t

t0 t1 t2 t3 t4 t5Timeframe Input A

Different inputs can
have different
lifetimes. E.g.

conditions.

�47

REACTIVE DESIGN

Algorithm

Conditions

t0 t1 t2 t3 t4t5Timeframe Input B

Result t0 t1 t2 t3 t5 t4

t

t0 t1 t2 t3 t4 t5Timeframe Input A

When data is "late"  
DPL can (optionally)

drop it.

�48

