
Single point of entry

EIC Software Meeting: Single point of entry 1

EIC Software website https://eic.gitlab.io

https://eic.gitlab.io/

Single point of entry: Content

yet available

EIC Software Meeting: Single point of entry 2

Color coding Available ● Not available

Introduction
• EIC Software Consortium
• EICUG Software Working Group

References to
• repository
• documentation
• tutorials
• other EIC software resources

Meetings
• schedule including meeting links
• archive of 2015 – 2018 Meetings

Documents
• overview (rates, requirements, visions)
• container guidelines (update)
• geometry exchange
• MCEG catalogue
• MCEG requirements

What else?

Single point of entry: Documents

yet available

EIC Software Meeting: Single point of entry 3

Color coding Available ● Not available

Overview

• request at HOW 2019
• possible structure

• rates
• requirements
• vision

Container guidelines

• update required

Geometry exchange

• convert to Markdown

MCEG requirements

• minutes of MCEG
workshop

• started but no
substantial progress
yet

What else?

EIC Software Consortium

Geometry Description and detector

interface

Abstract
This document summarizes a possible path forward for the geometry description for the simulations

of EIC detectors. It contains the list of what we believe should be the requirements for a EIC

geometry description system. The considerations in this document are probably general enough and

can be applied to any geometry system independently on the specific technology choice, the focus

however is on the I/O of geometry and on the link to sensitivity information, since these two aspects

have been the focus of our discussions in ESC meetings in FY2017 .

Initial considerations
It is safe to assume that in the time-scale for which detector simulations for EIC are needed Geant4

will continue to be the de-facto standard for detector simulations, we should thus consider the

paradigms implemented in Geant4 (e.g. hierarchical geometry, concepts of sensitive detectors and

hits) as general guidelines for our future works.

There are two main use-cases that drive the development of a geometry module: simulation and

reconstructions. It is an obvious requirement that the same geometry description should be used

between the two subsystems. How to implement this paradigm is mainly left to the specific choices

of experiments, and currently no real detector-independent framework has emerged so far as a widely

adopted standard. Many projects have tried to propose such frameworks(among the one mentioned

in our meetings are SLIC and DD4hep) with somewhat limited success . It is very important to stress

that we do not believe that the lack of wider adoption is not due to inherent quality of the artifacts

(that on the contrary is usually quite high), but since no large experiment has adopted these tools as

standard the community behind these tools has remained small and fractionated.

Simulation requires the description of geometry in increased level of complexity: from the simplified

ideal detectors used for concept studies, to the full detailed simulations of running experiment. The

data reconstruction as a general idea requires a more conceptual description of the geometry in terms of

read-out elements instead of physical placements. In particular the mapping between sensitive

geometry element and hits is of crucial importance.

We identified two possible ways of defining the geometry of a detector for simulation.

Geometry implementation via code

The first approach, to write code that uses directly geometry primitives, is usually preferred for

smaller applications, e.g. the majority of the examples distributed with Geant4 toolkit create the

detector geometry in this way. In case of ROOT based frameworks this approach is quite natural,

because you can add to this basic scenario some I/O and scripting capabilities (TGeo classes to

describe the geometry in a program, ROOT I/O to write geometry elements, and ROOT scripts,

that are programs by themselves, to steer the process).

Single point of entry: Online catalogue for MCEGs

• Goals Hosted on https://eic.gitlab.io, editable for EIC group on GitLab

• First steps Agree on fields and then open call for input among EICUG

• Proposed fields
• Categories ep, eA, radiative effects
• Name
• Contact information
• Brief Description What processes are described? What is unique about the MCEG?

Include version number as reference.
• References (links) website, repository, documentation, container, validation plots

EIC Software Meeting: Single point of entry 4

https://eic.gitlab.io/

Example: Online catalogue for MCEGs

• Category ep, eA, exclusive vector meson production, general photoproduction

• Name eSTARlight

• Contact Information Spencer Klein, srklein@lbl.gov

• Brief description eSTARlight simulates coherent photoproduction and
electroproduction of vector mesons in ep and eA collisions. It can simulate a variety of
different vector mesons, and it also includes an interface to DPMJET, which allows for
general simulation of photonuclear interactions. It internally simulates most simple (2-
body) vector meson decays with a correct accounting for the initial photon polarization
(transverse for Q^2 ~ 0, with an increasing longitudinal component with increasing Q^2)
in the angular distributions of the final state. It can also interface to PYTHIA8 to
simulate more complicated decays.

• References The code is freely available from https://estarlight.hepforge.org/ The
Readme file includes a fairly comprehensive users manual. The physics behind the
code is documented in M. Lomnitz and S. Klein, Phys. Rev. C99, 015203 (2019).

EIC Software Meeting: Single point of entry 5

mailto:srklein@lbl.gov
https://gcc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Festarlight.hepforge.org%2F&data=02%7C01%7Cmdiefent%40jlab.org%7C21a0891f3a634882fa3a08d6a3793188%7Cb4d7ee1f4fb34f0690372b5b522042ab%7C1%7C1%7C636876138268654510&sdata=12U1usBssj7Hu8P2Gx5y0kM1rklvK3OpxoRMiG2h3HU%3D&reserved=0

