
Users entry point

For community reference reconstruction and simulation

Three talks about our efforts

1. Interfacing with users (general discussion on good and evel on
where things are going)

2. Entry point for users ← (this talk)
(with live demo and description)

3. Community reference reconstruction for developers
(with in-depth details on backends, frontends and their connection)

Users and developers

NO EXPERIENCE
Novice

HIGHLY EXPERIENCED
ExpertsExperience axis

Users Developers

• Users solve problems through coding
• Some users are not so experience developers, but still have to code
• Treat users as developers

Importance of modularity

Software shell be modular!

• It is easier for users to switch parts of software

• It is easier for developers to update parts

• (!) It makes developers to produce better code (!)

The only way to maintain reusable code for decades

Stack of both HEP+NP and DataScience tools

Nowadays software shell work with both words:

• HEP & NP stack like ROOT, Geant4, etc

• Modern DataScience tools like Pandas, Numpy, R,

Where are frameworks are going?

Performant
core

Data
interface

Interface

Languages

UX

Most probably C++
Software must have performant core
Software must have interfaces

eJANA - JANA with plugins & deps for EIC community

eJANA - stands for EIC JANA
• Basic reconstruction
• Physics analysis
• Users detector codebase integration

Reconstruction
• Tracking - Genfit
• Vertex finding – Rave
• Physical analysis:

҆ROOT C++ or
҆Python data science tools

(Jupyter, Seaborn, Pandas, etc.
Any existing C++ (or even others) code can be:

- compiled as JANA plugin
- run parallelized in eJANA
- accessed by other plugins

EIC jana

EIC jana

Complexity scaling explained

Some complex system

We try to make complex - simple

Will fail most of the times
because of
complexity scaling
problem

• Complex → Simple
• Simple → Complex

Failed complexity scaling:

Escaping complexity scaling trap

Simple

Moderate

Expert

Complex

• Provide interfaces to internal complexity
(and better for everything)
(and even better – each step must be
replaceable)

• Interaction between layers must be clear

(And working on modularity… true modularity is the way to make it)

GUI you hate GUI you love

Wrapping something into a GUI to something is controversial:

• GUIs are pretty easily fall into Complexity scaling trap

• For some tasks GUI is not only the best solution, but the only acceptable solution
(Plots are GUI too!)

We provide just tools Users also need workflows

• Providing just tools and documentation in form of
wikis/sites to it make learning curve steep and
prevents users from doing their job effectively

• Workflows of how users achieve their tasks must be
overthought on each step of software development

Example of how docker container provides tools but not workflow

Target audience

• Users from specific collaborations

• Detector design groups

• General audience
(users, who wants to do physics studies)

MC Chain

Configuration

Generators

Fast simulationFull simulation

Reconstruction & analysis

g4e Geant4
Fast modeEic smear

Generators
Database

How easy to configure Generator +
Detector simulation + Reconstruction?

• Each module require its own
configuration

• Configuration of the whole system is
cumbersome

• We present new package that thinks of a
workflow of how you configure and run
such stack

Can we identify entry point workflows

Configuration

Run
(sim, recon,

analysis)

Introspect
results

Tamper with
code

How it really works

The next part of this presentation shows how such workflow can be implemented convenient for users

* (The Spiral depicts that in reality user experience changes on each
cycle. Users knowledge of the system grows and their understanding of
what is required to make the job done develops)

JupyterLab for EIC
Presentation of developed user environment

based on jupyterlab.

Env. allows to edit code of many languages with syntax highlighting and
even with autocompletion

PDF files are rendered. Latex, markdown. Good opportunity for docs

One can introspect root files. Everything is interactive and “rootish”

Render GDML geometry

(While not yet fully implemented for EIC), example of event viewer browser
from CERN

Interactive root plots in jupyter notebooks

Geometry can be opened right in jupyter notebook

Why 76 degrees?
• At apple stores laptop screens must all be set at exactly 76 degrees.

Why?

It is the most uncomfortable angle to look at a display which makes store visitors to adjust the screen. By
this they begin interacting with a laptop.

Python Notebooks is the excellent way to allow users to interact with analysis

Using usual DataScience tools to do analysis and plot data (without pyROOT)

Pyjano allows to configure and run “performant core” from python

You can use python API in notebook or pure python

It provides ipywidgets with GUI inside notebooks to run “PC”

GUI to configure “preformant core” inside jupyter notebooks

GUI may be used standalone

Can work in clouds (Google colab as example), central servers ad Jlab
jupyter lab servers. And other such things

Can we identify entry point workflows

Configuration

Run
(sim, recon,

analysis)

Introspect
results

Tamper with
code

How it really works

* (Yellow lines depict how such example notebooks and documentation
can guide users through cycles of analysis development)

JANA2 modularity
(what is important for this talk)

Pretty standalone .so library

Plugin

Data & Services

Configuration

Data & Services

Do we hide the complexity?

Jupyter lab, GUI,

Python, scripts, analysis

JANA, eic-smear, ROOT, Geant4

C++, eJANA, plugins

EJPM
• EJPM stands for eJana Packet Build Manager

> pip install ejpm # self descriptive CLI interface

• Never designed to be a real packet manager

• Provides unified build and deployment tool for

- workstations
- containers
- cloud deployment

Cloud?

Can we identify entry point workflows

Configuration

Run
(sim, recon,

analysis)

Introspect
results

Tamper with
code

OSG, farms

Distribution way

NO EFFORT AT ALL
Novice

Some effort
ExpertsEfforts required axis

Cloud Containers

Workstation
Compilation

EJPM

Conda

What is ready?
JANA2 – C++ framework for NP data processing - beta
eJANA – EIC community reference reconstruction - beta (June)

g4e – Geant 4 EIC – alpha-> beta (June)

ejpm – Packet manager builder - beta
deic – Docker helper for EIC users - in project
Eic-smear – Integrated into ejpm,

(full integration into ejana in progress) - beta (June)

pyjano – Python JANA Orchestrator – alpha
eic-jupyterlab – GUI for users entry point – prototype-> alpha

Future announces?
Follow EIC Software consortium & User Groups meetings:

May UG meeting: https://agenda.infn.it/event/17249/

Thank you!

GUI for CODE related work (success story)

Web GUI vs Native GUI

More like WEB gui

ROOT is with us HERE!

Jupyter notebooks

Jupyter lab

• Modular + plugins

• One place to tamper with
scripts and see the output

• Better interacts with system

• Can be used as SAAS

• Still in development

• Some workflows are there

• Have many limitations
compared to a native GUI

Conclusions

A heated discussion should conclude this talk!

We will present our thoughts on users entry point in terms of
working prototype

in the next talk

Root with a python interface
Python

CERN ROOT
USER

Good workflow

Even for code and libs:
Github -> Tutorial -> Selling you workflow of your future work

Good tool
vs

Backup slides

C++ everywhere is a strange choice

… So I started using ROOT. I was eager to learn C++. I took
courses, read Bjarne Stroustrup’s book. And then asked myself
–did ROOT people first get a good dose of LSD (lysergic acid)
and after decided to use C++ as scripting language?

Data science languages

Lets start with ROOT

Our major elephant is the software room

STUPID vs SOLID
+++
+++
+++

+-
+

• Single responsibility
• Open/closed
• Liskov substitution
• Interface segregation
• Dependency inversion

• Singleton
• Tight coupling
• Untestability
• Premature Optimization
• Indescriptive Naming
• Duplication

--
-
+-
+-
--

Thinking in workflows

Event generator

Simulation

Reconstruction

Docker containers Your own system install

Packet manager/build system

Installs Geant, g4e, Jana2, Rave…

User

Unexperienced developers

Saved Wasted

Time & money
saved on team
of professional
C++ developers

Time & money
wasted by
students,
postdocs,

professors and
scientist on

ROOT failuresTi
m
e/
m
on

ey
/e
ffo

rt
s

Unexperienced developers

Saved Wasted

Ti
m
e/
m
on

ey
/e
ffo

rt
s

Unexperienced developers

Saved Wasted

Ti
m
e/
m
on

ey
/e
ffo

rt
s

log

ROOT 7 will save us!

• MUCH better API

• Professional team (love their users)

• Work being done on improving modularity

ROOT 7 problem

It is for tomorrow while we need it yesterday

Can we live without CERN.ROOT?

NO
At least not today

Yes. We have trapped ourselves

• ROOT is dead. Long live the ROOT!

CERN root-7

• Example (and what could go wrong)
https://root.cern.ch/root-7

https://root.cern.ch/root-7

Things to consider

DISCLAMER:
• Some things in this talk are subjective and opinionated. I want this

talk to be a discussion. You don’t agree – excellent, lets discuss it.
• We, us, our = HEP & NP developers in general (most of the time)

ASSUMPTIONS:
• Our software does physics
• Our software is technically OK
• Are users happy with our software?

HOW 2019 impression

Users are not happy with
our (HEP&NP) software

(especially in analysis and
reconstruction part)

Usual view on users vs developers

Users

Developers
Develop software
for users

Use software,
provide feedback

