
ROOT 
Present and Future  

Lorenzo Moneta  
(CERN )

on behalf of the ROOT team

20-21 May 2019, Trieste



L. Moneta /  CERN EP-SFT

Outline

Current role of ROOT 
Vision for the future 
what we will have in ROOT 7 
current progress and planned new developments 

Conclusions

!2

A lot  of material presented coming from latest ROOT Users Workshop presentations (2018) 

https://indico.cern.ch/event/697389/


L. Moneta /  CERN EP-SFT

ROOT in a Nutshell
ROOT is a software framework with building blocks for: 

Data processing 
Data analysis 
Data visualisation 
Data storage 

ROOT is mainly written in C++ (C++11/17 standard) 
Bindings for Python available as well 

Adopted in High Energy Physics and other sciences and also industry 
more than 1 Exabyte of data in ROOT format 
Data analysis (machine learning), parameters estimations and discovery 
significances (e.g. the Higgs) 
Thousands of ROOT plots in scientific publications

!3

An Open Source Project 
We are on github 

github.com/root-project 
All contributions are warmly welcome!



L. Moneta /  CERN EP-SFT

ROOT  Components
ROOT can be seen as a collection of building blocks for various activities, like: 

Data analysis: histograms, graphs, functions 
I/O: row-wise, column-wise storage of any C++ object 
Statistical tools: rich modeling tools and statistical inference 
Math: math functions, linear algebra and minimisation algorithms 
C++ interpretation: full language compliance 
Multivariate Analysis (TMVA): e.g. Boosted decision trees, Neural 
networks (including deep learning) 
Advanced graphics (2D, 3D, event display) 
Declarative Analysis: Data Frame for event filtering and selection 
And more: HTTP serving,  JavaScript visualisation

!4



L. Moneta /  CERN EP-SFT

 What can you do with ROOT?   

!5



L. Moneta /  CERN EP-SFT

ROOT Utilization
ROOT is a centrepiece of HEP software 

almost every high energy physicist uses  
ROOT for data analysis 
central part for software of all experiments  

running 24/7 on the computing grid 
more than one EB of data in ROOT format 

thanks to unique capabilities of ROOT I/O 
 Modular and versatile toolkit:  

allow to develop specific tools for experiment and across them 
common ground for physicists developing software

!6



L. Moneta /  CERN EP-SFT

Current ROOT Team  
• Kim Albertsson, CERN 

• Guilherme Amadio, CERN 

• Sitong An, CERN 

• Bertrand Bellenot, CERN 

• Iliana Betsou, CERN 

• Philippe Canal, Fermilab 

• Javier Cervantes, CERN 
• Olivier Couet, CERN 

• Massimiliano Galli, CERN 

• Enrico Guiraud, CERN 

• Stephan Hageboeck, CERN 

• Sergey Linev, GSI 

• Lorenzo Moneta, CERN  

• Alja Mrak Tadel, UCSD 
• Axel Naumann, CERN 
• Vincenzo Padulano, CERN 
• Danilo Piparo, CERN 
• Oksana Shadura, Uni Nebraska 
• Matevz Tadel, UCSD  

• Enric Tejedor, CERN 
• Vassil Vassilev, Princeton Uni 
• Stefan Wunsch, CERN  

•

!7



L. Moneta /  CERN EP-SFT

Contributors and Activity
ROOT is a very active project with many contributors and 
several active developments 

!8

last month: 
commits/week: last year 



L. Moneta /  CERN EP-SFT

Evolution
ROOT is a very lively project 
maintenance of old code but several new important features are being 
developed 
Focus on key areas important for HEP 

parts seeing by every physicists  
Focus on performances 

Efficient code 
Parallelization and SIMD vectorisation whenever possible 
Transparent usage of GPU (e.g. in deep learning) 

Improved user interfaces 
make usage of several new features of new C++ 
maintain a dual C++/Python API (uniqueness of ROOT)

!9



L. Moneta /  CERN EP-SFT

New Developments

What are we focusing on  ?  
Data frame for declarative analysts  
new Web based graphics and GUI  
new I/O data interfaces  
new  PyROOT 
new C++ Histograms 
modernisation of TMVA  
faster RooFit

!10



L. Moneta /  CERN EP-SFT

ROOT I/O 
ROOT offers the possibility to write C++ objects into files 

This is impossible with C++ alone 
Used by the LHC detectors to write several petabytes per 
year 
seamless C++ integration: unique feature of ROOT 

Achieved with serialization of the objects using the reflection 
capabilities, ultimately provided by the interpreter 

Raw and column-wise streaming 
As simple as this for ROOT objects: one simple method -  
file->WriteObject(pObj, "name");

!11



L. Moneta /  CERN EP-SFT

I/O Feature Comparison

Unique capabilities of ROOT required for HEP data 
!12

[J. Blomer, ACAT 2017]

http://inspirehep.net/record/1699840


L. Moneta /  CERN EP-SFT

I/O Performance Comparison

!13

I/O performance when reading 2 variables 
La

rg
er

 =
 B

et
te

r

ROOT

Support different compression algorithms
[J. Blomer, ACAT 2017]

http://inspirehep.net/record/1699840


L. Moneta /  CERN EP-SFT

Evolution of ROOT I/O
New Data Set/NTuple  classes, aiming for efficient HEP data 
analysis with speed:   

optimised code for simple types and those known at compile 
time 
improve mapping to vectorised and paralleled hardware 
optimised integration with RDataFrame 

and robust interfaces:  
type safe interfaces 
Layer decomposition: logical layer, primitives layer, storage layer 
Separation of data model with the actual data

!14



L. Moneta /  CERN EP-SFT

New ROOT DataSet 
Aim to continue to be  
faster than anything else 
also in simple cases

!15



L. Moneta /  CERN EP-SFT

Decomposition

!16



L. Moneta /  CERN EP-SFT

ROOT Declarative Analysis
Highly efficient and simple data analysis 

from I/O to histograms and statistical and machine learning tools  
Simple programming model 

interfaces that are easy to use correctly and hard to use 
incorrectly 

type safe (complains if code does not match data) 
same interface in C++ and Python 

Benefit from parallelism 
can use all your CPU cores in the machine 
can be deployed on a cluster with Python and Spark

!17



L. Moneta /  CERN EP-SFT

RDataFrame

!18In production since last year  (ROOT version 6.14)



L. Moneta /  CERN EP-SFT

RDataFrame Example
Simple example 

Easy generalise to complex use-case
!19



L. Moneta /  CERN EP-SFT

Distributed Analysis

!20

JavierCVilla/PyRDF

https://github.com/JavierCVilla/PyRDF


L. Moneta /  CERN EP-SFT

PyROOT
Goal make PyROOT more modern and pythonic 

Previous PyROOT structure

!21



L. Moneta /  CERN EP-SFT

PyROOT
New Pythonization based on Cppyy 

automatic C++-Python bindings using directly Cling/LLVM

!22



L. Moneta /  CERN EP-SFT

New Features
Users can define Pythonizations for their own classes 

lazily executed 

Better support for new C++ features:  
variadic templates in function arguments 
defining and using C++ lambda functions from Python

!23



L. Moneta /  CERN EP-SFT

Interoperability with NumPy
Better interoperability with Data Science Python tools 

easier conversion to NumPy and Pandas  
easier to use powerful machine learning Python tools  

Example: Reading a TTree’s directly in NumPy arrays 

With RDataFrame.AsNumpy([‘v1’,’v2’,’v3’]) also from TTrees to 
NumPy arrays !24



L. Moneta /  CERN EP-SFT

New ROOT7 Graphics
ROOT7 uses Web based technologies 

able to run in the Web browser 

!25
WebEve

can run as 

a standalone application

an existing browser

embedded in other  
Web based GUI’s 
(e.g. Jupiter notebooks)



L. Moneta /  CERN EP-SFT

ROOT7 Graphics Technologies
Runs directly in a browser-backed window 

client side : Javascript 
server side: ROOT C++ 

Components: 
Javascript ROOT for displaying ROOT objects in browser (e.g. 
histograms) 

using three.js and D3.js 
THttpServer for the communication  
TBufferJSON for converting ROOT objects to JSON 
SAP OpenUI5 for GUI in browser (new fit panel, RBrowser,…)

!26



L. Moneta /  CERN EP-SFT

ROOT7 Histograms
RHist classes, available already in ROOT::Experimental 
Faster by moving conditional branches to compile time 
New design with separation of concerns: 

storage, binning, graphics, internal operations 
make usage of new C++ 
features 

Extensible: 
e.g. customisation of  
uncertainty algorithms 

Looking for early adoption to get feedback and guide development 
Integration with RDataframe and new graphics started

!27



L. Moneta /  CERN EP-SFT

Machine Learning in ROOT
Going through a modernisation of TMVA 
New deep learning tools added  

Support also Convolutional and Recurrent layers 
Efficient running using parallelisation on both CPU and 
especially GPU  

faster than Tensorflow/ 
Keras on GPU for  
simple models 

Focus on optimal 
model inference in TMVA

!28

TMVA CPU (P)

KERAS CPU (P)

TMVA GPU
KERAS GPU

TMVA GPU(2)

KERAS GPU(2)

410

510

610

N
um

be
r o

f E
ve

nt
s 

Tr
ai

ne
d 

/ s
ec

on
d

5 Dense Layer - 200 nodes - Batch Size = 1000

CPU
~7x
GPU

~2x

La
rg

er
 =

 B
et

te
r



L. Moneta /  CERN EP-SFT

TMVA Interfaces
External tools are available as additional methods in TMVA and 
they can be trained and evaluated as any other internal ones. 

RMVA: Interface to Machine Learning methods in R 
c50, xgboost, RSNNS, e1071 

PYMVA: Interface to Python ML packages 
scikit-learn  

RandomForest, Gradient Tree Boost, Ada Boost 

Keras (Theano & Tensorflow) 
support model definition in Python  
can perform training and evaluation inside ROOT/TMVA in C++ with 
direct connection to ROOT data

!29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kg
ro

un
d 

re
je

ct
io

n

MVA Method:
DL_CPU
PyKeras
BDT

Background rejection versus Signal efficiency



L. Moneta /  CERN EP-SFT

Faster Fitting
Implemented already parallelisation in ROOT Fitting 
RooFit : unique tools for data modelling and fitting in HEP 

focus on modernisation 
better interfaces (more Pythonic), usage of standard collections, etc.. 

improving performances 
refactor code for vectorisation in function computations 
reducing virtual function calls 
parallelisation whenever possible 

likelihoods computation (loop on events) 
first trying using multi-processes 
 (need optimal scheduling for complex models) 

toy MC generation
!30



L. Moneta /  CERN EP-SFT

Auto-Differentiation
ROOT will have also the capability for Auto-differentiation 

working in C++ and using power of Cling  (Clad)  [vgvassilev/clad] 

Essential component in many machine learning frameworks 
Allows to compute gradients directly by computer analysing the 
code path 

Back-propagation model allows in a single pass to compute 
gradient for all input variables 
Much faster than applying numerical differentiation where each 
parameter needs to be varied followed by a forward model pass  

Extremely useful for machine learning tools and fitting

!31

https://github.com/vgvassilev/clad


L. Moneta /  CERN EP-SFT

Other new developments
C++ modules for ROOT dictionary 

improved compilation time and easier deployment 
Building components on-demand 
CUDA back-end for Cling 
More vectorisation: 

development of new vectorised random number generators for 
parallel application (e.g MixMax generator) 

New interfaces 
Integration in Jupyter notebooks 
Jupyter C++ kernel based on ROOT/Cling available world-wide

!32



L. Moneta /  CERN EP-SFT

Python vs C++ Interfaces
ROOT allows to have exactly same code in both C++ and Python 

Example DataFrame: 

In ROOT 7 we have value based C++ (same semantics) 
rcanvas.Draw(hist,opAons);							C++	
rcanvas.Draw(hist,opAons)						PyROOT

!33



L. Moneta /  CERN EP-SFT

Non ROOT Analysis Software
Many alternative open source software exist now for data analysis 

Some of the Python data science tools are very appealing 
But big data processing different than physics analysis 

coding analysis; usability; CPU efficiency; data delivery; setup- cost / 
scalability; event-based; must not skip data points; role of uncertainties, 
etc… 

Major developments of these tools driven by big players (Google, 
Facebook, Amazon,…)  

adapting to them my require large developments  
Lifecycle of these tools much shorter than timescale of HEP experiments 

e.g Theano once major deep learning tool now already deprecated

!34



L. Moneta /  CERN EP-SFT

Outlook
Essential to maintain expertise of data analysis in HEP community 
Steer ROOT to maintain it competitive to alternative solutions 

make use of external tools whenever useful 
at the lower level (Clang) or for GUI (OpenUI) 

provide interfaces to powerful external components  
e.g Python tools for Machine Learning (e.g. Numpy, 
Tensorflow)   

We need to prove itself against these existing alternative 
accepting challenge to deliver a simpler, friendly and more 
robust ROOT

!35



L. Moneta /  CERN EP-SFT

Conclusions
ROOT modernisation is possible thanks to the contributions from 
CERN, Fermilab, Google (Summer of code students) and all our 
users   

special  thanks to their essential contributions in reporting bugs, 
providing patches, helping out on the forum, criticism and 
feedback 

Long Term support and evolution of ROOT is assured from CERN 
resources are guaranteed (for long lifetime of experiments)  
experience supporting more than 30k users

!36



L. Moneta /  CERN EP-SFT

References
root.cern 
https://cern.ch/forum  
https://github.com/root-project  

For more information of current developments see 
presentations at latest ROOT Users Workshop

See also ROOT work planning presentation for 2019 

!37

Next ROOT Users workshop will be in 2020 at Fermilab

- we will organise before a train the trainers event 

http://root.cern
https://cern.ch/forum
https://indico.cern.ch/event/697389/
https://indico.cern.ch/event/796272/contributions/3308634/attachments/1791807/2919407/ROOTPoW2019Planning.pdf
http://root.cern
https://indico.cern.ch/event/697389/


Backup Slides



L. Moneta /  CERN EP-SFT

New I/O interfaces

!39



L. Moneta /  CERN EP-SFT

RDataFrame: Collections

!40



L. Moneta /  CERN EP-SFT

RDataFrame Scaling

!41



L. Moneta /  CERN EP-SFT

Variadic Templates in PyROOT

!42



L. Moneta /  CERN EP-SFT

C++ Lambda in PyROOT
Define and use a C++ Lambda in Python

!43



L. Moneta /  CERN EP-SFT

RDF to Numpy and Pandas

!44



L. Moneta /  CERN EP-SFT

Deep Learning in TMVA 

Recent additions to standard dense  
layers architectures:  

Convolutional and recurrent layers 
New optimisers for faster convergence  

Development ongoing! 
Long Short Term Memory (LSTM) cells 
 for recurrent layers 
Generative adversarial networks (GAN)  
and Variational auto-encoder (VAE) 
for event generation

!45

Available New! Upcoming

Dense Conv RNN LSTM GAN VAE

CPU

GPU


