VFNG conference, Orosei, 2019

The SIPS experiment

a Suspended Interferometer for Ponderomotive Squeezing

Luca Naticchioni

for the SIPS/POLIS team

Outline

- 1. Quantum noise & Ponderomotive squeezing
- 2. Experiment design
- 3. Experimental setup of SIPS
- 4. Perspectives & conclusions

INFN Quantum Limit: Shot Noise and Radiation Pressure Noise

Photon shot noise (SN)

sensing noise:

photons in a laser beam are not equally spaced in time but they follow a Poissonian distribution **photocurrent time - series fluctuations**

Photon Radiation Pressure noise (RPN)

back-action noise:

photons transfer their momentum (i.e. a radiation pressure force) to a suspended mirror with a temporally inhomogeneous distribution **mirror position fluctuations**

Quantization of the EM field in an optical cavity

$$\vec{E}(\vec{r},t) = E_0[X_1\cos(\omega t) - X_2\sin(\omega t)]\vec{p}(\vec{r})$$

Squeezed states of light

INFŃ

 $\langle (\Delta \hat{X}_1)^2 \rangle \langle (\Delta \hat{X}_2)^2 \rangle \ge \frac{1}{16} \leftrightarrow \text{Heisenberg minimal uncertainty}$

Application to GW detectors: Martina De Laurentis' talk!

Squeezing generation: OPO vs Ponderomotive

- Kerr medium
- Optical Parameter Oscillator
 (OPO)

3rd and **2nd** susceptibilities induces *correlations* between *phase* and *amplitude* fluctuations

Frequency limitations due to losses mechanisms in the medium (phototermal fluctuations) and stability issues at low frequencies...

Empty cavity with suspended mirrors (ponderomotive)

Radiation Pressure (RP) on the suspended mirror induces a *coupling* between its *position* and the *intensity of light beam* \rightarrow *correlation* between *phase* and *amplitude* quadrature of the output state

Ponderomotive squeezing in a cavity with suspended mirrors

Gravity + RP acting on the mirrors \rightarrow optical spring

$$\begin{pmatrix} b_A \\ b_P \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -2\mathcal{K}(\Omega) & 1 \end{pmatrix} \begin{pmatrix} a_A \\ a_P \end{pmatrix}$$

coupling factor (frequency-dependent):

$$\mathcal{K}(\Omega) = \left(\frac{1}{1 - \left(\Omega^2 - \Omega_p^2\right)/\Theta^2}\right) \frac{1}{\bar{\delta}_{\gamma}}$$

Intensity (amplitude) **fluctuations** inside the cavity cause suspended mirror motion

Displacement of mirrors produces a phase shift in the reflected light

Phase shift proportional to intensity fluctuations \rightarrow coupling between phase and amplitude quadrature fluctuations \rightarrow squeezing

Pros: broadband and high value squeezing (>10dB), audio frequency (10Hz-10kHz), room temperature

Ponderomotive squeezing in a cavity with suspended mirrors

Gravity + RP acting on the mirrors \rightarrow optical spring

$$\begin{pmatrix} b_A \\ b_P \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -2\mathcal{K}(\Omega) & 1 \end{pmatrix} \begin{pmatrix} a_A \\ a_P \end{pmatrix}$$

coupling factor (frequency-dependent):

 $\mathcal{K}(\Omega) = \left(\frac{1}{1 - (\Omega^2 - \Omega_n^2)/\Theta^2}\right) \frac{1}{\bar{\delta}_{\gamma}}$

ponderomotive squeezing factor:

$$\xi_{min}(\Omega) = \frac{1}{|\mathcal{K}(\Omega)| + \sqrt{1 - \mathcal{K}(\Omega)^2}}$$

When $\Omega_P \ll \Omega, |\Theta|$ the mirror mechanical resonance depends only on the optical spring resonant frequency $\pm \Theta$

 $\begin{array}{ll} \Omega \gg |\Theta| & \rightarrow \mbox{Output not squeezed} \\ \Omega \approx |\Theta| & \rightarrow \mbox{Frequency-dependent squeezing} \end{array}$

 $\Omega \ll |\Theta| \rightarrow$ Frequency-independent squeezing

constant coupling, squeezing band given by $|\Theta|$

$$\mathcal{K} = \frac{1}{\bar{\delta}_{\gamma}} \qquad \xi_{min}(\Omega << |\Theta|) = \frac{|\bar{\delta}_{\gamma}|}{1 + \sqrt{1 + \bar{\delta}_{\gamma}^2}}$$

Ponderomotive squeezing in a cavity with suspended mirrors

Gravity + RP acting on the mirrors \rightarrow optical spring

$$\begin{pmatrix} b_A \\ b_P \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -2\mathcal{K}(\Omega) & 1 \end{pmatrix} \begin{pmatrix} a_A \\ a_P \end{pmatrix}$$

coupling factor (frequency-dependent):

$$\mathcal{K}(\Omega) = \left(\frac{1}{1 - \left(\Omega^2 - \Omega_p^2\right)/\Theta^2}\right) \frac{1}{\bar{\delta}_{\gamma}}$$

The optical spring frequency |Θ| depends on: input power, cavity finesse, detuning factor, mirror mass

$$\Theta^2 \equiv \frac{K_{opt}}{M} = -\frac{4\omega_0 \bar{W}}{\gamma M L c} \frac{\bar{\delta}_{\gamma}}{1 + \bar{\delta}_{\gamma}^2} = -\frac{4\omega_0 \bar{I}_0 \bar{\delta}_{\gamma}}{M c^2} \left(\frac{2\mathcal{F}}{\pi} \frac{1}{1 + \bar{\delta}_{\gamma}^2}\right)^2$$

Once these parameters (and then $|\Theta|$) are fixed, we design the system in order to have $\Omega_P \ll |\Theta|$ by choosing an appropriate **pendulum length**

Real parameters must be chosen ensuring a **large** squeezing factor and a suitable squeezing band, tanking into account the mechanical feasibility

Cavity detuning: $\delta = 0.3 \rightarrow \xi = 18 \ dB$, $\Theta = 2\pi \ kHz$ (large values increase the band; low values increase the squeezing factor)

Cavity finesse: $\mathcal{F} \leq 3 \cdot 10^4$

(large values increase Θ and reduce intracavity losses; low values increase the optical spring stability)

Input power: $I_0 = 2.5 W \rightarrow 0.1 MW$ circulating power (large values increase Θ but above 0.2MW thermal effects lead to degradation of the cavity behaviour)

Squeezing factor and band

- Optical spring

The other parameters depends on trade-off with other experimental constraints: seismic noise pre-insulator, optical bench dimension ($\emptyset < 1m$) ...

Parameters choice for SIPS

Cavity length:l = 350 mmMirror RoC:RoC = 250 mm

Cavity stability

INFN

Parameters choice for SIPS

Suspended mirror mass

High values:

- easy to suspend
- easy to sense and actuate (feedback control)

Low values:

- Large optical spring resonance (frequency-independent band)

Given a suitable seismic pre-insulation we can choose a relatively high mass value:

$10g \le m \le 300g$

A standard 25.4 mm mirror in fused silica with a 6.35 mm thickness has a mass of about 7.8 g, while with a 10 mm of thickness it can reach a mass of 11.1 g.

Can be suspended with a monolithic Virgo-like technique (→thermal noise reduction)

Higher mass value relaxes the sensitivity requirements

R&D and experiment setup

The POLIS legacy

Preliminary R&D on a low frequency ponderomotive squeezer in the past years (under the acronym POLIS, funded by a PRIN of the Italian MIUR), involving many research institutions:

Università di Roma Sapienza & INFN-Roma, Università di Napoli Federico II & INFN-Napoli, Università di Roma Tor Vergata & INFN-Roma2, Università di Pisa & INFN-Pisa, INFN-Genova, INFN-Perugia, Università del Sannio, Università di Firenze & INFN-Firenze, Università di Salerno, Università di Trento & INFN-Padova-Trento & Fondazione B.Kessler, Università di Camerino, Università di Urbino, CNR

→ Design and realization of the mechanics for a suspended interferometer (Roma1); Main laser (Urbino, Napoli); optical design (Napoli, Roma2), optical benches (Pisa)...

SIPS

The experimental setup was then funded in the last 2 years (2017-2018) by **INFN** – CSN5

R&D and experiment setup

Seismic and **thermal noises** are the main limitations to exploit the RP with a 10-100g-scale mirrors

Solutions: well-known technologies in GW detectors

, Efficient seismic filter:

Superattenuator of Virgo inverted pendulum + a chain of pendula, passive+active damping. Provides a seismic attenuation of -180*dB* at 10Hz

Monolithic suspension:

SiO₂ fibers welded to mirrors as in Virgo and LIGO GW detectors: low thermoelastic losses with respect to metallic wires

R&D and experiment setup

Bench Requirements: must be compliant with the allowed size and weight in order to be suspended at the SAFE (Super Attenuator Facility at EGO-Virgo): Height: 800 *mm* Diameter: 960 mm (allowing two cavities 350mm-long) Weight: ~ 150 kg Material: anticorodal (Al-alloy) **Upper plate** (auxiliary bench) Cylindrical baffles Main optical bench The structure must combine high stiffness (to push up the mechanical mode frequencies) and low mass (< SA limit).

Optical Bench

Suspended Bench

Suspended Bench

Requirements: the fundamental constraint is that the suspension thermal noise of the lighter (end) mirror must be below $\sim 10^{-16} m/\sqrt{Hz}$ at 10 Hz; if not squeezing would be undetectable.

Payload Design: double pendulum suspension (monolithic suspension of the mirrors).

Input Payload vibration modes

End Payload vibration modes

Local control of suspended elements

- Optical levers setup for mirror and marionette (5 SLED + QPDs)
- 4 Coil-magnet actuator for each mirror and marionette

Local control of suspended elements

Substrates:

- Input mirrors: 3" diameter, 30mm thickness, 250mm RoC, 300g, Suprasil
- Beasplitter 3" diameter, 30mm thickness, 300g, Suprasil
- End mirrros: 1" diameter, 10mm thickness, 250mm RoC, 10g, Suprasil

Coatings:

- input: T=260ppm @0°
- End: T=1ppm @0°
- BS: 50%±0.05% @45°

Bench Setup Main optics

Bench Setup Monolithic suspension of mirrors

INFŇ

Homodyne detection

Sensitivity

From the Fluctuation-Dissipation Theorem:

$$S_X^{FDT}(\omega) = \frac{4k_bT}{m\omega} \frac{\omega_0^2 \phi(\omega)}{\left(\omega^2 - \omega_0^2\right)^2 + \left[\omega_0^2 \phi(\omega)\right]^2}$$

Suspension thermal noise The overall Φ is given mainly by the Thermoelastic and Surface loss angles:

đ	$\phi_{te} = \Delta \frac{\omega \tau}{\omega \tau} \qquad \phi_s = \phi_{bulk} (1 + 8 \frac{d_s}{\omega})$			suspension wires:	
/	1+	$(\omega \tau)^2$ τs	φ out $(2 + 2 d)$	Marionette	Mirror
	where: $VT \leftarrow \sigma > 2$		Parameter	C85 steel	Fused silica
			density $\rho [\text{kg/m}^3]$	7.9×10^3	2.2×10^3
$\Delta = \frac{II}{\alpha} \left(\alpha - \beta \frac{\partial}{\partial \alpha} \right)^2$			specific heat $c [J/K/kg]$	502	772
$- c\rho (\gamma \gamma \pi)$		$Y\pi$	thermal conductivity $k [W/K/m]$	50	1.38
	$\tau = \frac{c\rho d^2}{2.16 \cdot 2\pi k}$		thermal expansion coefficient α [1/K]	1.4×10^{-7}	$3.9 imes 10^{-7}$
			temperature T [K]	294	294
			young modulus Y [Pa]	$2.1 imes 10^{11}$	$7.2 imes 10^{10}$
			fractional change of Y(T) β [1/K]	-	1.52×10^{-4}
coati			wire radius r [m]	$1.5 imes 10^{-4}$	2.5×10^{-5}
the	Parameter	value			· · · ·
	ρ_{eff}	$4085.8 \ kg/m^3$	$\overline{g_{3}}$ $\varphi_{bulk,SiO_2} = 4 \times 10^{-10}$; $\varphi_{bulk,C85} = 10^{-4}$; $d_{s,SiO_2} = 1.5 \times 10^{-2}$		
	Y_{eff}	99.6~GPa			
	ν_{eff}	0.204 S^{Lev}	$P(f) = \frac{4k_BTE_s\phi_{coat}}{5}$ Strain e	nergy and	silicate bonding
	ϕ_{coat}	1.48×10^{-4} $^{\odot}X$	$\pi f F_0^2$ contribu	ition estim	ated with a FEM

L. Naticchioni – SIPS experiment - Vacuum Fluctuations at Nanoscale and Gravitation @ Orosei, Italy – 2019 April

Sensitivity

Sensitivity

Sensitivity

Interferometer equivalent noise

Next steps

Table-top Phase

- The mechanical setup is almost complete, main optics will be delivered in May 2019;
- The setup will be moved to the Squeezing Lab at EGO (Virgo);
- Main optics and monolithic suspension will be installed at EGO.

Suspension Phase

- Refit of SAFE suspension, integration study;
- Integration of SIPS in SAFE.

But meanwhile...

Next steps

Spin-off: demonstration of EPR entanglement squeezing using SIPS cavities as a test-bed

Conclusions

- Ponderomotive squeezing is an interesting alternative to "classic" OPO-based squeezing;
- 2. Given an adequate seismic and thermal noise reduction it is possible to design a tabletop interferometer with *macroscopic* mirrors quantum coupled by radiation pressure → *ponderomotive squeezing*;
- 3. SIPS is an experiment with the target of squeezing generation through ponderomotive technique in the *audio-band*;
- 4. The tabletop experimental setup will be used also as a testbed for EPR-entanglement squeezing generation.

Thanks for your attention!